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Abstract

Results of an amplitude analysis of the B± → K±K∓K± Dalitz plot are presented.

The analysis is made using an integrated luminosity of 210.6 fb−1, recorded by the

BABAR detector at the PEP-II asymmetric B Factory. This dataset corresponds to

231.8 million BB pairs.

Branching fractions and 90% confidence level upper limits are calculated and aver-

aged over charge conjugate states (B). For those modes that have significant branch-

ing fraction measurements CP violating charge asymmetry measurements are also

presented (ACP ). However the asymmetry for all modes is consistent with zero.

A feature is found around 1.5GeV/c2 that corresponds to no known resonance.

We measure it to be a scalar resonance of mass (1.523+0.028
−0.020)GeV/c2 and width

(175+32
−27)MeV/c2. It is listed here as (KK)00. The results from the nominal fit are

summarised below:

B(B± → K±K∓K± Inclusive) = (35.1± 1.3± 2.1)× 10−6

B(B± → K±K∓K± Non− resonant) = (18.6± 3.4± 1.8)× 10−6

B(B± → φ(1020)K±;φ(1020)→ K+K−) = (4.3± 0.6± 0.3)× 10−6

B(B± → f0(980)K
±; f0(980)→ K+K−) = (8.7± 3.1± 1.4)× 10−6

B(B± → (KK)00K
±; (KK)00 → K+K−) = (3.3± 1.1± 0.7)× 10−6

B(B± → χc0K
±;χc0 → K+K−) = (1.7± 0.5± 0.1)× 10−6

B(B± → φ(1680)K±;φ(1680)→ K+K−) < 1.5× 10−6
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B(B → f2(1270)K
±; f2(1270)→ K+K−) < 1.1× 10−6

B(B → f ′2(1525)K
±; f ′2(1525)→ K+K−) < 2.4× 10−6

B(B → f0(1710)K
±; f0(1710)→ K+K−) < 3.3× 10−6
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1
Theory

1.1 Introduction

The BABAR experiment was first conceived as a high luminosity tool to study CP

violation in the B meson system, where “CP” is the product of the Charge conju-

gation and Parity symmetries.

In nature where we have a symmetry there is, in general, also a conservation law.

For example the symmetry of the laws of nature under the group of spatial trans-

formation (i.e. the laws of nature are the same everywhere), gives rise to the law

1



1.2. CP Violation 2

of conservation of momentum. Similarly it was assumed that left-right symmetry

gave rise to a conservation of parity (P ), particle-antiparticle symmetry gave rise to

charge conservation (C), and event order symmetry led to time-reversal invariance

(T ).

This chapter discusses the theory concerning this analysis and gives an overview of

CP violation in general.

1.2 CP Violation

Both C and P symmetries are conserved in classical physics, and it was assumed

they applied universally until 1956, when Lee and Yang proposed that parity is not a

symmetry of weak interactions [1], [2]. They also proposed experimental ideas to test

this hypothesis. The first to be tested, by Wu et al. in 1957, involved measurements

of the β decay of cobalt-60 [3].

Their experiment exploited the fact that β particles are mainly emitted from the

poles of cobalt nuclei. The nuclei were placed in a strong magnetic field so that their

spins aligned in the same direction. In a mirror image the north and south poles

of the nuclei would be reversed since they will be spinning in the opposite direction

to their real counterparts, and so parity conservation demands that beta particles

be equally emitted from the two poles. However an anisotropy in the emitted β

particles was observed — parity conservation was violated. This meant that the

laws of physics are dependent on the ‘handedness’ of the experiment, giving rise to

the phrase “God is weakly left-handed”.

After the result was announced, still in 1957, Ioffe, Okun and Rudik showed that P

violation meant C invariance must also be violated in weak decays [4]. It seemed

however that a combined CP symmetry was conserved, but in 1964 Christenson,

2



1.2. CP Violation 3

Cronin, Fitch and Turlay found experimental evidence for CP violation [5]. At the

time K-short (K0
S) and K-long (K0

L) were thought to be CP eigenstates,

ĈP |K0
S〉 = +1|K0

S〉, ĈP |K0
L〉 = −1|K0

L〉. (1.1)

If CP is conserved then K0
L decays to a CP +1 state are forbidden, and K0

S decays to

CP −1 states are likewise forbidden. However Christenson et al observed the decay

of K0
L to the CP +1 state of π+π−, and so found the first evidence for the violation

of the CP symmetry.

1.2.1 CPT symmetry

CPT invariance is implicit in the structure of the quantum field theories that are

used to describe nature, and is thus far backed up by all experimental evidence. The

conservation of CPT while CP is violated implies that T (time reversal symmetry)

also must be violated.

Direct experimental evidence for T violation was first seen by the CPLEAR collab-

oration in 1998 [6]. They studied the decays pp̄ → K+π−K0 and pp̄ → K−π+K̄0,

where the neutral kaon decayed via K0
t=0 → e−π+ν̄t=τ or K̄0

t=0 → e+π−νt=τ . The

type of neutral kaon present in the decay was determined from the accompanying

K± or e±, and measured at t = 0 and t = τ . The asymmetry of these neutral kaon

decays is equal to:
P (K̄0 → K0)− P (K0 → K̄0)

P (K̄0 → K0) + P (K0 → K̄0),
(1.2)

where the probability P that a K0 (t = 0) is observed as a K̄0 at a time τ should

be equal to the probability that K̄0 (t = 0) is observed as a K0 at a time τ . A

difference between these two probabilities was found, and thus proof of T violation.

3
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1.2.2 The CKM matrix

The existence of quark mixing and quark decay lead to the introduction of the

Cabbibo matrix as a method to describe the phenomenon of one quark changing

into another quark via the weak force, It was introduced to relate the weak quark

eigenstates to their mass eigenstates,

(
d′

s′

)
= VC

(
d
s

)
, (1.3)

where d′ and s′ are the weak eigenstates and d and s are mass eigenstates. VC is the

Cabbibo matrix,

VC =
(
cosθC sinθC
−sinθC cosθC

)
, (1.4)

where θC is the Cabbibo mixing angle (θC ≈ 13◦). As θC is real there is no possibility

of CP violation in this model.

After the discovery of CP violation it was obvious that the model needed to be

updated. Kobayashi and Maskawa found that by including an additional generation

of quarks the matrix then had three mixing angles and a complex phase. It is

interesting to note therefore that the discovery of CP violation led directly to the

prediction of the existence of top and bottom quarks by Kobayashi and Maskawa [7].

The new matrix was named the Cabibbo-Kobayashi-Maskawa (CKM) matrix and

is written:

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 (1.5)

The standard parameterisation and the one adopted by the Particle Data Group is:

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 (1.6)

where cij = cos θij, sij = sin θij and δ represents the complex phase. θij is the mixing

angle between the ith and jth generations. The Wolfenstein parameterisation [8] is

4



1.2. CP Violation 5

also commonly used. It expresses the matrix elements in expanding powers of λ:

VCKM ≈




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) (1.7)

where λ = Vus(≈ 0.22) and A(≈ 0.81) are well measured experimentally [9], and ρ

and η correspond to the phase δ from Equation 1.6.

1.2.3 Unitarity triangles

The CKM matrix now describes quark mixing in the standard model. It is a unitary

matrix (V V † = 1) and this implies two types of relation:

∑

j

|Vij|2 = 1, (1.8)

where i = u, c or t, and j = d, s and b. This relation is called “weak universality”

and implies that the sum of all the couplings of any up-type quark to the down-type

quarks is the same across the generations. The second type of relation is:

∑

i

VijV
∗
ik = 0, (j 6= k) (1.9)

for any fixed j and k and where i, j and k can this time represent any flavour of

quark with the one proviso that i must be of a different up-down type to j and k.

There are six such relations, each of which equates to the mixing of one flavour of

quark to another, and so relate to mixing of the neutral mesons (see Section 1.3.1).

Two of the six relations include the top quark, which doesn’t form bound states,

leaving only four relations that relate to actual particles:

VduV
∗
dc + VsuV

∗
sc + VbuV

∗
bc = 0. (1.10)

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0. (1.11)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.12)

5



1.2. CP Violation 6

(c)

(b)

(a)

Figure 1.1: The three down-type unitarity triangles drawn to a common

scale using experimental results for the various Vij [10]. (a) shows VidV
∗
is = 0

(K0 mixing), (b) shows VisV
∗
ib = 0 (B0

s mixing) and (c) shows VidV
∗
ib = 0 (B0

mixing), where i = u, c or t.

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0. (1.13)

Equation 1.10 describes D0 mixing, 1.11 K0 mixing, 1.12 B0 mixing and 1.13 B0
s

mixing. As the sum of the three complex quantities must cancel, each relation can

be geometrically represented by a triangle in the complex plane. These are known

as unitarity triangles.

Of the four remaining relations only one, Equation 1.12, has sides of similar magni-

tude. Figure 1.1 shows the three down-type unitarity triangles drawn to a common

scale. The almost flat K0 and B0
s triangles indicate that CP violation is small in

the leading K0 and B0
s decays. The short sides may exhibit significant CP violation,

but the associated decays are very rare. The B0 triangle, commonly referred to as

the Unitarity Triangle, is rather more open and predicts large CP asymmetries in

6
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β

α

0
0 1

γ

VVcd cb
*

Vtd
*V tb

*

VVcd cb
*

VubVud

Im

Re

Figure 1.2: The rescaled Unitarity Triangle

B0 decays. This means that one can (relatively) easily measure all three angles and

the lengths of all three sides and if they don’t sum to give a closed triangle it would

be a sign of new physics.

The Unitarity Triangle can be simplified by rescaling; a phase convention is chosen

making (VcdV
∗
cb) real, then each side is divided by |VcdV ∗

cb|. This gives a real side of

unit length, and puts two corners of the triangle at (0,0) and (1,0), thus leaving only

one vertex to find. BABAR labels the angles of the Unitarity Triangle as α, β and γ,

where each is given by

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗
cb

]
. (1.14)

The angles are physical quantities and represent the amount of CP violation in the

B meson system.

There are three types of CP violation,

¦ Violation in decay.

7



1.2. CP Violation 8

¦ Violation in mixing.

¦ Violation in the interference between decays with and without mixing.

1.2.4 CP violation in decay

CP violation in decay is often called direct CP violation. It occurs when the decay

rate of one particle to another does not match that of its CP conjugate process.

If one considers the decay B → f with amplitude Af and its CP conjugate B → f̄

with amplitude Āf̄ , then there is direct CP violation if

∣∣∣∣∣
Af
Āf̄

∣∣∣∣∣ 6= 1, (1.15)

where

Af = 〈B|H|f〉 =
∑

j

Aje
i(δj+φj), Āf̄ = 〈B|H|f̄〉 =

∑

j

Aje
i(δj−φj), (1.16)

and Aj, δj and φj are the amplitude, strong phase and weak phase of contributing

processes. H is the Hamiltonian. CP violation can occur when there are at least

two processes of a similar magnitude, but with different strong and weak phases.

The CP asymmetry of a decay is defined:

ACP ≡
Γ(B̄ → f̄)− Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
, (1.17)

where Γ is the decay rate.

As direct CP violation comes from interference between various processes contribut-

ing to a decay it can occur in the decays of B±. The first discovery of direct CP

violation in B decays came in the B0 → K+π− channel [11]. Generally neutral

decays are not “self-tagging” (B0 → K+π− is due to the kaon), but charged decays

have the advantage of always being self-tagging. That is, one can tell the flavour of

8



1.2. CP Violation 9

the B meson from the charge of the decay products. With neutral decays one also

has to examine the spectator B to hopefully be able to identify the flavours, thus

losing vital statistics.

Charmless decays of B-mesons, where b → uūs or b → ss̄s, are expected to be

good candidates for observing direct CP violation as most have similar magni-

tude contributions from both weak tree-level processes and loop diagrams. Fig-

ure 1.3 shows Feyman diagrams for processes contributing to the charmless decay

B± → f0(980)K
±.

Figure 1.3: B± → f0(980)K
± decay diagrams.

9



1.2. CP Violation 10

1.2.5 CP violation in mixing

This form of CP violation is said to be indirect since the violation occurs in the

mixing, rather than the actual decay. When CP violation was discovered in kaon

decays it was indirect violation that was being observed.

CP violation in B meson mixing occurs when:
∣∣∣∣∣
p

q

∣∣∣∣∣ 6= 1, (1.18)

where p and q are complex coefficients and obey the normalisation condition |p|2 +
|q|2 = 1. They are coefficients from B mixing, see Section 1.3.1. The ratio p/q is

given by:
p

q
= −2(M12 − i

2
Γ12)

∆mB − i
2
∆ΓB

, (1.19)

where M12 and Γ12 come from the matrices in equation 1.32 and ∆mB and ∆ΓB are

the differences in mass and lifetime between the mass eigenstates and are defined:

∆mB ≡MH −ML (1.20)

∆ΓB ≡ ΓH − ΓL. (1.21)

Experimental measurements show that ∆ΓB ¿ ∆mB and therefore also Γ12 ¿M12.

Equations 1.20 and 1.21 then reduce to:

∆mB ≈ 2|M12| (1.22)

∆ΓB ≈ 2<(M12Γ
∗
12) / |M12|. (1.23)

Equation 1.19 then simplifies to:

p

q
≈ − M12

|M12|
(1.24)

To first order |p/q| = 1, which means that there is very little CP violation directly

from the mixing of B mesons. Second order corrections are expected to be small

(O(10−2)) [10].

10
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1.2.6 CP violation in the interference between decays with

and without mixing

This type of CP violation can occur with both direct and indirect CP violation, or

it can occur separately. It occurs in decays to a CP eigenstate, i.e. a final state that

is accessible to both B0 and B0, for example J/ψK0
S
. Lets call the final state fCP .

CP violation is observed if the quantity

|λ| ≡
∣∣∣∣∣
q

p

ĀfCP

AfCP

∣∣∣∣∣ 6= 1, (1.25)

where p and q again come from B mixing and AfCP
and ĀfCP

are the decay am-

plitudes of the mode being studied. The time-dependent CP asymmetry is given

by:

ACP (t) =
Γ(B → f)(t)− Γ(B → f)(t)

Γ(B → f)(t) + Γ(B → f)(t)
(1.26)

=
(1− |λ|2) cos (∆mBt)− 2=(λ) sin (∆mBt)

1 + |λ|2 (1.27)

where ∆mB is again the mass difference between the B0 mass eigenstates.

The decay B0 → J/ψK0
S
proceeds mainly via a standard tree process and as such

the CP violation in decay is minimal. Therefore one can make the approximation

|λ| = 1, thus simplifying Equation 1.27 to:

ACP (t) = −=(λJ/ψK0
S
) sin (∆mBt), (1.28)

where

=(λJ/ψK0
S
) = sin(2β). (1.29)

Therefore the angle β can be readily determined from the asymmetry of this and

similar decays.

11
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1.2.7 Current CKM constraints

The CKM fitter group [12] collate the results from the CKM sector of particle

physics. They use the Wolfenstein parameterisation (Equation 1.7) with λ and

A, but after rescaling the Unitarity Triangle the apex moves from (ρ, η) to (ρ̄, η̄).

The relation between the two is given by [13]:

ρ+ iη =

√
1− A2λ4(ρ̄+ iη̄)√

1− λ2[1− A2λ4(ρ̄+ iη̄)]
. (1.30)

As mentioned earlier λ and A are well measured experimentally. λ, which is Vus,

has been measured to be approximately 0.23 from kaon semi-leptonic decays. A is

Vcb/λ
2 and Vcb is measured in semi-leptonic B-meson decays to be approximately

41×10−3. These together with current best measurements of the Unitarity Triangle

parameters are used as inputs for a global fit in CKM fitter. The latest fit results

are shown in Table 1.1 and Figure 1.4.

1.3 B meson physics

A B meson is so named because the heaviest quark it contains is a b (or b) quark.

There are essentially four types of B meson, the B0
d , B

±
u , B

0
s and B±

c . The first two

of which are commonly referred to simply as B0 and B±, and will be for the rest

of this thesis. The quark content and masses of the B mesons can be seen in Table

1.2.

The B0 meson offers a useful environment for studying CP violation as the most

open unitarity triangle corresponds to the transition of a b quark to a d quark and

is the mechanism for B0 mixing (see Section 1.2).

To create B0 mesons the BABAR experiment collides electrons and positrons at a

centre-of-mass energy of 10.58GeV/c2, which corresponds to the mass of the bound bb

12



1.3. B meson physics 13

Observable central ±2σ

λ 0.2272+0.0020
−0.0020

A 0.809+0.029
−0.028

ρ̄ 0.197+0.050
−0.087

η̄ 0.339+0.047
−0.037

|Vud| 0.97383+0.00047
−0.00047

|Vus| 0.2272+0.0020
−0.0020

|Vub| (3.82+0.31
−0.29)× 10−3

|Vcd| 0.22712+0.00199
−0.00205

|Vcs| 0.97297+0.00048
−0.00047

|Vcb| (41.79+1.26
−1.27)× 10−3

|Vtd| (8.28+0.92
−0.57)× 10−3

|Vts| (41.13+1.25
−1.24)× 10−3

|Vtb| 0.999119+0.000052
−0.000054

α (deg) 97.3+8.7
−14.0

β (deg) 22.86+2.03
−1.97

γ (deg) 59.8+13.9
−7.9

Table 1.1: Current best fit results using CKM fitter [12].

13
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Figure 1.4: Constraints in the ρ̄-η̄ plane from the latest CKM fitter publica-

tion [12].
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Particle Quark content Charge Mass

B0
d bd 0 (5279.4± 0.5)MeV/c2

B̄0
d bd 0 (5279.4± 0.5)MeV/c2

B+
u bu +1 (5279.0± 0.5)MeV/c2

B−
u bu -1 (5279.0± 0.5)MeV/c2

B0
s bs 0 (5369.6± 2.4)MeV/c2

B̄0
s bs 0 (5369.6± 2.4)MeV/c2

B+
c bc +1 (6.4± 0.39± 0.13)GeV/c2

B−
c bc -1 (6.4± 0.39± 0.13)GeV/c2

Table 1.2: Details of the basic B mesons. There also exist various excited

state B∗ mesons that are not covered here.

state Υ (4S). This is the lightest meson that can decay to a BB pair. Approximately

21% of all hadronic events at BABAR produce a Υ (4S), and greater than 96% of

Υ (4S) decays produce a BB pair. These decays are constituted almost equally of

B0B0 and B+B−. The heavier B0
s and B±

c are not produced and therefore not

studied at BABAR.

Although a large proportion of the physics goals of BABAR were to do with studying

CP violation in B0 mixing, CP violation also occurs in B± decays.

1.3.1 Neutral meson mixing

When a meson ‘mixes’ it changes into the corresponding antimeson. This process

must conserve charge, and so can only occur in the neutral mesons; K0 (sd), D0

(cu), B0 and B0
s . Mixing does not occur in all neutral mesons, for example the π0

(a uu/dd mixture) or the Υ (4S), as they are their own antiparticles.

15



1.4. Dalitz Plot Theory 16

B0 and B0 are flavour eigenstates and have a definite quark content. Figure 1.5

shows box diagrams for B0 mixing. The mass eigenstates for B0 are labelled BL

(‘light’) and BH (‘heavy’) due to the relatively large mass difference (a few MeV/c2).

However they share almost identical lifetimes (conversely K0 mass eigenstates have

very different lifetimes, but almost identical masses). BL and BH can be written as

a linear combination of the flavour eigenstates:

|BL〉 = p|B0〉 + q|B̄0〉, |BH〉 = p|B0〉 − q|B̄0〉, (1.31)

where p and q are complex and obey the normalisation condition |p|2 + |q|2 = 1.

This combination is governed by the Schrödinger equation

i
d

dt

(
p
q

)
= H

(
p
q

)
≡
(
H11 H12

H21 H22

)(
p
q

)
≡
(
M − i

2
Γ
)(

p
q

)
, (1.32)

where M and Γ are 2 × 2 Hermitian matrices originating from mixing and decay

respectively. The ratio of p/q is used for measuring CP violation, as detailed earlier

in Section 1.2.5.

1.4 Dalitz Plot Theory

The decays of heavy mesons to three-body final states are generally dominated by

intermediate resonances, which can be described as quasi-two-body decays, contain-

ing a resonance and meson. For example the decay B± → K±K∓K± can proceed

via B± → φ(1020)K±, where φ(1020)→ K+K−.

� �

��� ���

� �

	�
 ���




�

� �� � �

Figure 1.5: Box diagrams for B0–B0 mixing [14].
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1.4. Dalitz Plot Theory 17

Using the Dalitz plot technique [15] allows one to study the properties of the various

resonances while also taking into account any interference between them.

Consider the decay of a B-meson at rest to three daughter particles. The B has mass

mB and the daughters have masses m1, m2, m3, momenta p1, p2, p3, and energies

E1, E2 and E3. The Lorentz invariant mass combinations are then m2
12, m

2
13 and

m2
23 and plotting two against each other gives a Dalitz plot. Figure 1.6 shows an

example plot.

)4 / c
2
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2m
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 / 
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2

 (
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eV
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K
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12
14
16
18
20
22
24

Figure 1.6: A example Dalitz plot for B+ → K+K−K+. The events were

generated using a Toy Monte Carlo method. It is convenient to use the

opposite-charge pairs as the axes because there are no resonances that decay

to the same-charge pair m2
K+K+ .

The Lorentz invariant phase space for such a three body decay can be written

dN ∝ δ4
(
pB −

3∑

i=1

pi

)
3∏

i=1

d3pi
Ei

= δ

(
mB −

3∑

i=1

Ei

)
p21dp1p

2
2dp2dΩ1dΩ2

E1E2E3

. (1.33)

As the B meson is spin-0 the decay is isotropic, and so fixing the direction of ~p1

gives
∫
dΩ1 = 4π. Thus

∫
dΩ2 = 2πd cos θ12, where θ12 is the angle between ~p1 and

~p2. Then using:

E3 =
√
p21 + p22 + 2p1p2 cos θ12 +m2

3 (1.34)

17



1.4. Dalitz Plot Theory 18

Equation 1.33 becomes:

dN ∝ δ
(
mB − E1 − E2 −

√
p21 + p22 + 2p1p2 cos θ12 +m2

3

)
d cos θ12

p21dp1p
2
2dp2

E1E2E3

,

(1.35)

which reduces to:

dN ∝ E3

p1p2

p21dp1p
2
2dp2

E1E2E3

(1.36)

∝ p1dp1
E1

p2dp2
E2

, (1.37)

and since EidEi = pidpi

dN ∝ dE1dE2 (1.38)

∝ dm2
12dm

2
23, (1.39)

and thus the decay rate for a three-body decay is proportional to

|M|2 dm2
12dm

2
23, (1.40)

whereM is the matrix element for the decay. The distribution of points across the

Dalitz plot thus depends uponM. IfM is constant across the plot then one would

see a uniform density, which is consistent with nonresonant decay. However if reso-

nances are present thenM would have a kinematic dependence and the resonances

will form bands on the Dalitz plot, as can be seen in Figure 1.6.

The boundary of the Dalitz plot is described by

m2
12 +m2

13 +m2
23 = m2

B +m2
1 +m2

2 +m2
3. (1.41)

The extreme edges of the boundary for each axis describe a situation where the

momenta of the two particles are parallel or anti-parallel, i.e.

(
m2
ij

)
max

= (Ei + Ej)
2 − (pi − pj)2 (1.42)

(
m2
ij

)
min

= (Ei + Ej)
2 − (pi + pj)

2 . (1.43)
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1.4. Dalitz Plot Theory 19

1.4.1 Helicity angle

The helicity angle, θHij
, is defined to be the angle between particles j and k in the

ij rest frame. Its cosine is given by

cos θHij
=

(m2
jk)max + (m2

jk)min − 2m2
jk

(m2
jk)max − (m2

jk)min

. (1.44)

It is a useful quantity as the spin of a resonance can be identified by its distribution

in cos θH . A scalar (spin 0) particle has a uniform distribution in cos θH , whereas

the distribution for a vector (spin 1) particle is cos2 θH and for a tensor (spin 2) it

is |3 cos2 θH − 1|2. Figure 1.7 shows plots of each distribution.
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Figure 1.7: Symmetrical Dalitz plots showing different helicity patterns of

a fictitious resonance, with mass 1.6GeV/c and width 50MeV. The left most

plot shows it as a scalar resonance, the central plot a vector and the right hand

plot shows a tensor distribution.

1.4.2 Interference

The main advantage that a Dalitz plot analysis has over a quasi-two-body approach

when studying resonances is that the Dalitz approach can take into account and

measure the interference between the different processes that contribute to the three-

body final state. Consider the case of two such processes, a and b. Their decay

amplitudes are given byMa andMb and the relative phase between the two is δ.

19



1.5. B± → K±K∓K± Decay 20

The total matrix element is then

|M|2 =
∣∣∣Ma +Mbe

iδ
∣∣∣
2

(1.45)

= |Ma|2 + |Mb|2 + 2Re
(
MaM∗

be
iδ
)

(1.46)

As the decay rate is proportional to |M|2 it is important to take into account these

cross-terms to properly measure the branching fractions of the various modes.

1.5 B± → K±K∓K± Decay

B± → K±K∓K± is a three-body B decay. Decay modes that contribute to this

final state include the charmless decay channels B± → K±K∓K±(nonresonant),

B± → f0(980)K
±, B± → φ(1020)K±and the non-charmless decay B± → χc0K

±,

where each of f0(980), φ(1020) and χc0 decay to K+K−.

A “charmless” decay is one that occurs without a b → c transition. The charmless

decays in this analysis occur via b → uus and b → sss transitions, and they are

therefore suppressed, with branching fractions of the order 10−5. This suppression

of normal tree processes means that most charmless decays have large contributions

from loop diagrams — generally named “penguin” processes (the φ(1020) mode ac-

tually has no contributing tree process). Figures 1.3 and 1.8 show decay diagrams for

the various processes that contribute to B± → f0(980)K
± and B± → φ(1020)K±.

Initial analyses of B± → K±K∓K± and its various constituent modes have been car-

ried out at the intensity level [16], [17], [18]. In these cases the interference between

intermediate resonances had to be treated as a source of systematic uncertainty. A

full amplitude level Dalitz analysis is preferable as this source of uncertainty can be

removed and the level of interference can be measured.

20



1.5. B± → K±K∓K± Decay 21

Figure 1.8: B± → φ(1020)K± decay diagrams.

1.5.1 Motivation

There are a number of motivating factors for studying the B± → K±K∓K± Dalitz

plot. Most simply it is a natural progression from previous analyses of charmless

two-body final state decays. Charmless decays provide new possibilities for CP

violation searches. CP violation in B± → φ(1020)K± is predicted by the Standard

Model not to exceed a few percent [19], but b→ sss is considered as a good potential

source of new physics [20]. A major goal is therefore to measure any potential direct

CP violation.

Much theoretical progress has been made in understanding strong interaction ef-

fects, with many predictions of branching fractions for pseudoscalar-pseudoscalar

and pseudoscalar-vector processes. Table 1.3 shows the relevant predictions for this

analysis. Further constraining the charmless B decay measurements will aid progress

in this field.
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Mode Authors Model BF (×10−6) ACP (%)

B± → φ(1020)K± Chen et al. [21] PQCD 10.2+3.9
−2.1 –

Cheng et al. [22] QCDF 4.3+3.0
−1.4 –

Du et al. [23] NF 3.8-3.9 –

Du et al. [23] QCDF 6.2-7.2 1.0− 1.4

Beneke et al. [19] QCDF 2.5-11.6 0.6− 1.7

Chiang et al. [24] SU(3) fit 8.7± 0.4 –

B± → f0(980)K
± Cheng et al. [25] QCDF 5.5-10.9 –

B± → χc0K
± Colangelo et al. [26] QCDF 110-350 –

Table 1.3: Theoretical predictions for modes that contribute to

B± → K±K∓K±. Note that the branching fraction (BF) for φ(1020) →
K+K− is (49.2 ± 0.6)%. The BF for f0(980) → K+K− is unknown and

BF(χc0 → K+K−) = (5.4 ± 0.6) × 10−3. PQCD = Perturbative Quantum

chromodynamics factorisation, QCDF = QCD Factorisation, NF = Naive Fac-

torisation, and SU(3) = Global fit to SU(3) flavour B → V P measurements.

Measuring the branching fraction for B± → f0(980)K
±, where f0(980)→ K+K−, is

important for further the understanding of the f0(980). Currently very few branch-

ing fractions of the f0(980) have been measured and it is of great interest to discover

how strong its coupling to KK is.

As the f0(980) mass is just below the K+K− threshold a coupled-channel Breit-

Wigner (or Flatté) is used to describe its amplitude [27],

A(m) =
1

(m2
0 −m)− im0(Γπ + ΓK)

, (1.47)

where m0 is the f0(980) mass and

Γπ(m) = gπ
√
m2 − 4m2

π (1.48)

ΓK(m) = gK
√
m2 − 4m2

K (1.49)
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1.5. B± → K±K∓K± Decay 23

where mπ and mK are the invariant masses of the pion and kaon, and gπ and gK

are experimentally determined coupling constants. There are a number of different

measurements for gπ and gK [28], [29] and [30], but we choose to use the results from

the BES collaboration [28], as the BES numbers are the only ones to come directly

from a joint π+π−/K+K− analysis.

Now if IK/Iπ is defined to be the ratio of the integrals of the square of the amplitude

across the K±K∓K± and K±π∓π± Dalitz plots, then the branching fraction ratio

is given by

R ≡ BF (f0(980)→ K+K−)

BF (f0(980)→ π+π−)
=

3

4

IK
Iπ

gK
gπ
, (1.50)

where BES gives gπ/gK = 4.21 ± 0.25 ± 0.21. IK/Iπ is then calculated to be 0.29

and therefore R = 0.92± 0.07.

The Particle Date Group list f0(980) → K+K− merely as seen [9]. Recent

B± → K±π∓π± Dalitz analysis results give the product branching fraction of

B± → f0(980)K
±, where f0(980) → π+π−, as 9.2+0.8

−1.1 × 10−6 [31], and so one could

expect to see a BF for B± → f0(980)K
±, where f0(980)→ K+K−, of ∼ 8.7× 10−6.

A further physics goal is to determine the size and nature of the nonresonant contri-

bution. Three-body decays of D-mesons have been studied extensively. A number of

Three-body B-meson Dalitz analyses have now also been published. In most cases

the nonresonant component was small and constant over the Dalitz plot [32], [33].

However a previous Belle collaboration Dalitz analysis of B± → K±K∓K± showed

a large, non-flat, nonresonant contribution [34].

1.5.2 Previous experimental results

B± → K±K∓K± has a good signal to background ratio for a charmless B decay,

but it is not expected to yield any large branching fraction asymmetries. BABAR has
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1.5. B± → K±K∓K± Decay 24

previously measured the B± → K±K∓K± branching fraction to be (29.6 ± 2.1 ±
1.6)× 10−6, with an asymmetry of 0.02± 0.07± 0.03 using a sample of 81.8 fb.

Many different analyses, carried out by various collaborations, have investigated the

constituent decays of the B± → K±K∓K± Dalitz plot, but most have been intensity

level analyses. Recently BELLE published a B± → K±K∓K± Dalitz analysis [34],

and they did not find any evidence for the f0(980). Past experimental results are

collated in Table 1.4.

Mode Collaboration BF (×10−6) ACP (%)

B± → K±K∓K± (charmless total) BABAR [17] 29.6± 2.1± 1.6 2± 7± 3

BELLE [34] 30.6± 1.2± 2.3 –

B± → K±K∓K± (nonresonant) BELLE [34] 24.0± 1.5± 1.8+1.9
−5.7 –

B± → φ(1020)K± (φ(1020)→ K+K−) BELLE [34] 4.72± 0.45± 0.35+0.39
−0.22 –

B± → φ(1020)K± (φ(1020)→ all) BABAR [35] 10.0+0.9
−0.8 ± 0.5 4± 9± 1

BELLE [34] 9.60± 0.92± 0.71+0.78
−0.46 –

CDF [36] 7.6± 1.3± 0.6 −7± 17

CLEO [16] 5.5+2.1
−1.8 ± 0.6 –

B± → f0(980)K
± (f0(980)→ π+π−) BABAR [32] 9.47± 0.97± 0.46+0.42

−0.75 8.8± 9.5± 2.6+9.5
−5.0

BELLE [34] 7.55± 1.24± 0.69+1.48
−0.96 –

B± → f0(980)K
± (f0(980)→ K+K−) BELLE [34] < 2.9 –

B± → χc0K
± (χc0 → K+K−) BABAR [18] 1.49+0.36

−0.34 ± 0.11 –

BELLE [34] 0.86± 0.26± 0.06+0.20
−0.05 –

B± → χc0K
± (χc0 → all) BABAR [18] 270± 70 –

BELLE [34] 196± 35± 33+197
−26 –

Table 1.4: Previous experimental results for modes that contribute to

B± → K±K∓K±. The BELLE results all come from their Dalitz analysis

of B± → K±K∓K±. Measurements for B± → f0(980)K
± (f0(980) → π+π−)

are listed as a guide — the f0(980) → K+K− decay is predicted to be

∼ 0.92×BF (f0(980)→ π+π−).

The measurement that stands out the most is that of the BELLE Dalitz analysis
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which found no evidence of the decay B± → f0(980)K
± (f0(980)→ K+K−). This is

perhaps explained by the fact that they use older gπ/gK numbers from E791 [29].
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2
The BABAR Experiment

2.1 Introduction

The BABAR experiment was designed primarily to study CP violating asymmetries

in the decays of B mesons. It was constructed at the Stanford Linear Accelerator

Center (SLAC) to take advantage of the SLAC linac, which is used to accelerate

electrons and positrons before feeding them into the BABAR’s e+e− collider, named

PEP-II (Positron Electron Project-II). An overview of the layout of the experiment

can be seen in Figure 2.1. PEP-II has two storage rings, one containing 9 GeV
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2.1. Introduction 27

electrons, and the other containing positrons at 3.1 GeV. They travel along two

vacuum tubes, guided by magnets before being focussed to collide in the centre of

the BABAR detector. The design luminosity is 3 x 1033 cm−2s−1 (about 1/4 million

BB pairs per day – the best achieved is just over 3/4 million). This luminosity is

required as many of the decays used to measure CP violation have very low branching

fractions in the region of 10−4-10−6.

A collision at these energies gives a centre-of-mass energy (
√
s) of 10.58GeV – this is

at the centre of the Υ (4S) bb resonance, which is the lightest meson that can decay

to BB (the branching fraction for Υ (4S) → BB is >96%). The e+e− → Υ (4S)

cross-section is 1.09nb, to qq (where q = u, d, s or c) the cross-section is 3.2nb and

to τ+τ− it is 0.9nb.

As the beams have asymmetric energies the Υ (4S) meson is produced with a boost in

the laboratory frame of βγ = 0.56, allowing the lifetimes of the BB to be measured

from their decay lengths. Knowledge of the lifetimes is needed for the measurements

of any (CP ) time-dependence in their decay rates. Also important to the measure-

ment of time-dependent CP violation is the fact that the B mesons produced by

the decay of the Υ (4S) are coherent, i.e. determining (‘tagging’) the flavour of one

meson means that the flavour of the other is known at the time the tagged meson

decayed.

About 1/12th of the time the experiment runs at about 40MeV below the Υ (4S)

resonance. This off-peak running is so that non-BB̄ backgrounds can be studied, as

there is no B pair production below the resonance.
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2.2. The Asymmetric B Factory — PEP-II 28

Figure 2.1: Overview of the SLAC linac and the PEP-II rings

2.2 The Asymmetric B Factory — PEP-II

A complete description of PEP-II can be found at [37]. The need for asymmetric

beams means that the electrons and positrons must be kept in separate storage rings.

Studies made [38] found that a ratio 3:1 between the high (HER) and low energy

rings (LER) was optimal. Table 2.1 shows values for many of the most important

parameters for PEP-II.

2.2.1 The Interaction Point

To achieve the needed high luminosities the beams are divided up into ∼1500 low

charge bunches, minimising beam-beam interference. The bunches must be brought

into focus at the interaction point (IP), but separated immediately afterward so as

to avoid secondary collisions. Operating at design parameters secondary collisions

would happen 62cm away from the interaction point if the beams were not separated.

Figure 2.2 shows the layout of the interaction region. QD4 and QF5 are quadrupoles

used for focusing the HER, whereas QF2 focuses the LER. Each of these magnets

lie outside the BABAR detector. QD1 are the final focusing magnets for both beams
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Table 2.1: Parameters of the PEP-II machine. Numbers correct as of October

2005 [39].

Parameters Design Present in collision

Energy HER (GeV) 9.0 9.0

Energy LER (GeV) 3.1 3.1

Current HER (mA) 750 1615

Current LER (mA) 2140 2650

Number of bunches 1658 1732

Bunch length (mm) 15 11-12

Luminosity (1033 cm−2s−1) 3.0 9.0

Luminosity ( pb−1/day) 130 662

and lies mostly within the detector. The B1 separation dipoles lie completely within

the detector volume and as such affect the detector acceptance.

The IP has a size of about 130µm in the x direction, 5.6µm in y and 9mm in z. See

Figure 2.4 for an illustration of how the different axes relate to the BABAR detector.

2.2.2 Backgrounds

Machine backgrounds cause deadtime within the detector, leading to the loss of

interesting physics events, and can also result in radiation damage to the detector

subsystems. There are a number of different machine backgrounds and each one is

exacerbated by the high luminosities needed at BABAR.

Synchrotron radiation is more of a problem at BABAR than most e+e− machines due

to the complicated optics near the IP. To minimise its effect the geometry of the
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Figure 2.2: Plan view of the PEP-II interaction region (vertical scale is

exaggerated). Focusing quadrupoles are labelled Qx1-5 and separation dipoles

B1.

interaction region was designed so that most of the radiation would pass through

the detector without interactions. Also copper masks are used to reduce interactions

with the beam pipe.

A second form of background is from ‘lost’ beam particle interaction with the beam

pipe wall, causing electromagnetic showers. A particle may become lost through

interaction with gas molecules in the beam pipe or bremsstrahlung radiative losses.

This form of background is minimised by having an excellent vacuum in the region
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2.2. The Asymmetric B Factory — PEP-II 31

near the IP.

2.2.3 Performance

PEP-II has performed excellently since turning on in May 1999. It achieved its

design goals within the first few years and now surpasses them by a large margin.

In the last year one of the main boosts to luminosity came from the introduction

of trickle injection from December 2003 in the LER and March 2004 in the HER.

Instead of turning the detector off while the beams are topped up, the beams are

continuously topped up by a very low rate ‘trickle’, thus removing a large inefficiency

from machine running. The effect of this and other ongoing improvements to PEP-II

can be seen in Figure 2.3.
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Figure 2.3: PEP-II integrated luminosity per month [40].

The total luminosity delivered up to the end of July 2004 was 256 fb−1 which includes

all the data used in the following analysis.
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2.3 The BABAR Detector

A full description of the BABAR detector can be found in [41]. Unless otherwise

stated all numbers quoted in this chapter are taken from there.

BABAR is a general purpose detector designed to make precision measurements of

the angles of the Unitary Triangle through studying time-dependent CP violation

in neutral B decays. It is also used for precision measurements of B, tau and charm

physics. Figure 2.4 shows side and end views of the BABAR detector and illustrates

the BABAR coordinate system.

The main design aims of the detector were for:

¦ High reconstruction efficiency for both charged and neutral particles.

¦ Good momentum and position resolution for charged particles over the range

60MeV-4GeV.

¦ Good energy and angular resolution for neutral particles over the range 20MeV-

4GeV.

¦ Excellent vertex resolution in all three dimensions, but especially in z (see

Figure 2.4) for the measurement of B decay vertices needed for time-dependent

CP measurements.

¦ Excellent particle identification to distinguish between e, µ, π±, K± and p

over a broad kinematic range. This is particularly important for distinguishing

between important, but similar, final state decays such as B0 → π+π− and B0

→ K+π−.

¦ The greatest possible angular acceptance in the centre-of-mass frame.

¦ The ability to operate in high background conditions.
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Figure 2.4: The BABAR Detector. The BABAR co-ordinate system is shown.

z is in the direction of the HER beam. y is vertically upward while x points

horizontally away from the centre of the PEP-II rings and θ and φ are defined

as in the standard polar co-ordinate system
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BABAR has several main components, each of which plays a part in achieving the

above goals. They are the Silicon Vertex Tracker (SVT), the Drift Chamber (DCH),

the Detector of Internally Reflected Cherenkov radiation (DIRC), the ElectroMag-

netic Calorimeter (EMC) and the Instrumented Flux Return (IFR).

For good momentum resolution a strong magnetic field is needed over the SVT and

DCH. This is provided by a 1.5T superconducting solenoid placed between the EMC

and IFR so as not to block particle trajectories before measurement in the DIRC

and EMC. The coil has an inner radius of 1.4m. The coil and cryostat combined

are between 0.25 and 0.4 radiation lengths thick — thin enough to allow hadrons to

pass reasonably well to the IFR.

2.4 The Silicon Vertex Tracker (SVT)

2.4.1 SVT Physics Requirements

The primary goal of the SVT is to provide precise position measurements of the B

meson decay vertices that are essential for time-dependent CP studies. Monte Carlo

studies [42] showed that a z resolution of ≈80µm is needed.

The SVT is the only subsystem capable of measuring charged particles with trans-

verse momenta (pT ) less than 120MeV/c as they will not reach the DCH due to

magnetic-field-induced curvature. Therefore high tracking efficiencies at these low

energies is required. Such particles include slow pions from the decays of D∗ mesons

which are very common B-decay products.

The SVT finally is used in particle identification, measuring the rate of energy loss

(dE/dx) for particles with momenta less than 700MeV/c.
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2.4. The Silicon Vertex Tracker (SVT) 35

2.4.2 SVT Design

The SVT is made up of five concentric layers of double-sided silicon strip sensors.

The strips on either side are arranged orthogonally to each other so as to measure

both φ and z. The arrangement of the layers is detailed in Figures 2.5 and 2.6. The

arched design of the outer two layers minimises the amount of material that a particle

must traverse down to ∼4% of a radiation length (to minimise bremsstrahlung and

multiple scattering) whilst also maximising the angular coverage (90% of the solid

angle in the centre-of-mass frame).

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 2.5: End view of the SVT showing the layered structure. The radii

of the layers are 1 = 32 mm, 2 = 40 mm, 3 = 54 mm, 4a = 124, 4b = 127

mm, 5a = 140 mm and 5b = 144 mm.

The inner three layers each contain 6 modules and are positioned very close to the

beam pipe at radii of 3-5cm from the IP. The primary role of these layers is to

acquire precision measurements for the calculation of the vertex. The outer two

layers contain 16 and 18 modules respectively and are mainly used for alignment

with the DCH. Because of the geometry of these outer layers they cannot be tilted

to overlap like the inner layers. As such they are arranged into sub-layers 4a/4b and
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5a/5b as seen in Figure 2.5.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support

        cone

Bkwd.

support

cone

Front end 

electronics

Figure 2.6: Side on view of the SVT showing the arched design of the outer

layers

Each module as well as being double-sided is further divided into forward and back-

ward halves, all of which are read out by electronics placed outside the detector

acceptance. When an ionized particle passes through a module an electric pulse

is generated. The signal is amplified and shaped and then compared to a pre-

determined threshold. The length of ‘time over threshold’ measurement is approx-

imately logarithmically related to the deposited charge, allowing a large dynamic

range to be covered.

Finally the SVT has been designed to withstand an integrated radiation of 2MRad

over its lifetime, or an instantaneous dose of 1Rad/ms.

2.4.3 SVT Performance

Good alignment of the SVT is essential for getting the best position and momentum

measurements. Local alignment determines the positions of modules with relation to

one another and global alignment determines the position of the SVT with respect to

the other subdetector systems. Two-pronged di-muon events and also some cosmic
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ray events are used for calibration. For the global alignment there must be strong

tracks left in both the SVT and DCH.

The resolution is found to be better than 40µm for both z and φ in each of the inner

three layers, giving a three dimensional vertex resolution of better than 70µm. The

efficiency of the detector, measured using data, is 97% (excluding defective sections).

The dE/dx resolution is found to be 14%. This gives a 2σ separation of pions and

kaons up to 600MeV/c and between kaons and protons to 1GeV/c.

Defective sections currently account for fewer than 5% of the total 208. Replacement

modules for the SVT are under construction and are will be installed in the next

major shutdown, currently scheduled to be August 2006.

2.5 The Drift Chamber (DCH)

2.5.1 DCH Physics Requirements

The DCH is the main charged particle detector in BABAR. It has primary responsi-

bility for position and momentum measurements for particles with pT in the range

0.1-5.0GeV/c. It is also needed for particle identification (PID) using dE/dx mea-

surements – this is especially important at energies below 700MeV/c where the DIRC

is not effective. For good PID a minimum dE/dx resolution of 7% is needed.

The DCH is also needed to provide tracking and timing information to the trigger,

and must be able to perform in high background conditions.
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Figure 2.7: Side-on view of the DCH. All distances are in mm.

2.5.2 DCH Design

The DCH consists of drift cells in a concentric arrangement around the SVT. The

resulting 2.8m long cylinder is placed asymmetrically (see Figure 2.7) with respect

to the interaction point so as to increase acceptance in the forward direction, i.e.

the direction of the 9 GeV/c2 e− beam.

There are 40 layers of drift cells. These are grouped into 10 super-layers of 4 layers

each, overall providing up to 40 measurements of space co-ordinates per track. The

design of the innermost four super layers is shown in Figure 2.8. Each cell is typically

1.2×1.8 cm2 and consists of one sense wire (20µm2 diameter gold plated aluminium)

surrounded by six field wires (120µm2 diameter gold plated aluminium). Multiple

scattering is minimised by using low mass wires and by filling the cells with a

helium-based mixture (helium and isobutane in a 4:1 ratio). Overall the gas and

wires constitute 0.28% of a radiation length for a particle travelling through the

detector.

There are 4 axial (A) super-layers, for measuring z, and 6 stereo (U, V) super-layers,

for measuring φ, and they are arranged in the pattern AUVAUVAUVA. The stereo
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angle varies from 45mr in the innermost super-layer to 76mr in the outermost.
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Figure 2.8: Cell layout for the four DCH super-layers

As a charged particle passes through the gas it ionises molecules along its path.

These ions drift toward the sense wire, generating an avalanche of charge which

serves to amplify the signal. The drift time is measured using the leading edge of

the signal, which is digitised with a 1ns resolution. The total charge in the pulse is

summed for the dE/dx measurement.

The drift chamber was designed to withstand an integrated radiation dose of 20

kRad.
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2.5. The Drift Chamber (DCH) 40

2.5.3 DCH Performance

The DCH dominates BABAR tracking efficiency and pT resolution. The track effi-

ciency is measured by comparing the number of reconstructed tracks to the number

of tracks detected by the SVT that should fall within DCH acceptance.
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Figure 2.9: Tracking efficiency of the DCH, shown as a function of pT (top)

and polar angle (bottom).

Figure 2.9 shows the efficiency as a function of momentum and polar angle for the

voltages 1900V and 1960V. The lower voltage was used during the early running of
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BABAR due to a mistake while commissioning the DCH. Throughout this period the

average tracking efficiency was only about 93% as opposed to the design value of

(96 ± 1)% (at 1960V). It was decided that 1900V gave too poor an efficiency, but

using 1960V would reduce the lifetime of the detector too much, and so from 2001

onward the DCH has operated at a compromise voltage of 1930V. However, with

improved track finding code the DCH has been able to operate at design efficiency.
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Figure 2.10: dE/dx measurements for various particles in the DCH as a

function of momentum. The expected Bethe-Bloch curves are overlaid.

The DCH is calibrated using bhabha and di-muon events. The calibration is per-

formed for each cell. The drift distance is estimated using the best fit to the track in

question (the cell being calibrated is excluded from the fit). dE/dx measurements

also need to be calibrated to take account of potential biases from changing gas tem-

perature and pressure. There is good pion/kaon separation up to around 0.7GeV/c

as seen in Figure 2.10.

The dE/dx resolution is typically 7.5% which is close to the design value of 7.0%.
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The single cell resolution is 125µm2 and the drift time is about 1ns. The momentum

resolution is given by

σpT /pT = (0.13± 0.01)% · pT + (0.45± 0.03)% (2.1)

where pT is the transverse momentum in GeV/c.

2.6 The Detector of Internally Reflected

Cherenkov Radiation (DIRC)

2.6.1 DIRC Physics Requirements

The DIRC is the main charged hadron particle identification system at BABAR.

Differentiating between pions and kaons is essential for effective B flavour tagging,

needed for CP studies. It is also crucial for identification of rare B decay states

involving pions and kaons such as the analysis described in this document. As the

useful particle identification abilities of the SVT and DCH extend no further than

700MeV/c there is a need for another system to extend BABAR’s range to 4.2GeV/c

– the DIRC.

The DIRC must also be sufficiently thin (at least in terms of radiation lengths) to

not effect the energy measurements of the calorimeter.

2.6.2 DIRC Design

The DIRC is made up of 144 synthetic quartz bars arranged into a twelve-sided

polygon around the DCH. The refractive index (n) of quartz is 1.472. When a

charged particle traverses the quartz at a velocity of greater than c/n it will emit a
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Cherenkov light cone at an angle cosθc = 1/nβ to its direction of travel. A portion

of this light is trapped within the quartz by total internal reflection (θc = 42.8◦)

and then travels to the water-filled standoff box at the backward end of the detector

(a mirror is positioned at the forward end). Figure 2.11 shows the overall DIRC

geometry and Figure 2.12 shows a more detailed schematic of the standoff box and

a quartz bar.

Figure 2.11: Elevation view of the DIRC. Distances are in mm.

The standoff box is instrumented by 10,752 photomultiplier tubes (PMTs) and con-

tains 6000 litres of purified water. Each PMT has a diameter of 28.2mm and is

surrounded by a light catcher to increase its acceptance. Magnetic shielding sur-

rounds the standoff box to prevent the BABAR solenoid from interfering with the

PMTs. The signal detected by the PMTs is a conic section, with opening angle

being the Cherenkov angle (given adjustments for the quartz/water boundary).

The DIRC acceptance covers 94% in the azimuth and 83% in the polar angle. The

quartz bars have a radial thickness of 8cm, which is approximately 17% of a radiation

length.
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Figure 2.12: Schematic diagram of a DIRC radiator bar and water-filled

standoff box, showing a typical photon’s path.

2.6.3 DIRC Performance

Figure 2.13 shows the pion/kaon separation provided by the DIRC versus track

momentum. A separation of 4σ is achieved at 3GeV/c. The K± identification

efficiency is 85-97%, while the proportion of pions misidentified as kaons is ∼3%.

Figure 2.14 shows the π±K∓ mass spectra around the D0 mass with and without

the use of the DIRC for particle identification.
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Figure 2.13: DIRC pion/kaon separation as a function of track momentum.

0

500

1000

1500

x 10 2

1.75 1.8 1.85 1.9 1.95

Kπ mass   (GeV/c2)

en
tr

ie
s 

pe
r 

5 
M

eV
/c

2

Without DIRC

With DIRC
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without using the DIRC for particle identification.
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2.7 The ElectroMagnetic Calorimeter (EMC)

2.7.1 EMC Physics Requirements

The EMC is a positional calorimeter. It is the only subsystem able to detect photons

and as such needs to have precise energy and angular resolution. It is important

to reconstruct the photons well so as to have good reconstruction efficiency for π0

and η, which are decay products in many important B-decays. 50% of the photons

from π0 decay have energies less than 200MeV, so it is essential to have good low

energy measurement. Photons from processes such as e+e− → e+e−γ and e+e− →
γγ can have energies up to 9GeV. These decays are important for calibration and

so overall the EMC must cover an energy range from 20MeV to 9GeV. The EMC

also provides particle identification for electrons and neutral hadrons.

2.7.2 EMC Design

The calorimeter is made from 6580 thallium-doped caesium iodide crystals. The

barrel section comprises 48 rings of 120 crystals and there is also a forward endcap

containing 8 rings with a total of 820 crystals. There is no backward endcap to

keep costs down. Figure 2.15 is a cross-section of the EMC showing the layout of

the rings and how they are directed toward the interaction point. The acceptance

covers 90% of the solid angle in the centre-of-mass frame.

CsI was chosen for its high light yield, small Molière radius (radius of spread of

electromagnetic showers) and short radiation length. CsI also emits at a wavelength

detectable by silicon photodiodes. Pure CsI is however a very soft and pliable

material making it extremely difficult to polish, thus compromising performance.

With the addition of thallium CsI becomes fully solid and therefore a more useful
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Figure 2.15: Cross-sectional side-on view of the top half of the EMC, all

dimensions are in mm.

scintillator.

The CsI crystals vary in length from 29.6cm (16.1 radiation lengths) in the backward

end of the EMC to 32.4cm (17.6 radiation lengths) at the forward end. The endcap

crystals are also 32.4cm long. All crystals have a front face area of ∼5 cm2, compa-

rable with the size of the Molière radius. This is designed to cause electromagnetic

showers to fall into surrounding crystals, making a cluster.

The scintillation light is detected by a pair of silicon photodiodes glued to the rear

end of each crystal.

2.7.3 EMC Performance

There are a number of ways in which the EMC must be calibrated. Light yields

vary across the different crystals as well as being non-uniform with respect to energy

deposited. The yields also change with time due to radiation damage.
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Low energy calibration is performed using a 6.13MeV radioactive source. Electrons

from bhabha events are used for calibration over the range 50MeV–7.5GeV and

photons from π0 decay are also used up to 5GeV.

2.8 The Instrumented Flux Return (IFR)

2.8.1 IFR Physics Requirements

The IFR acts as a muon detector, a neutral hadron calorimeter and also serves as a

flux return for BABAR’s superconducting magnet. Good muon and K0
L
identification

is essential for many important time-dependent CP analyses (e.g. B → J/ψK0
L
, J/ψ

→ µ+µ−).

It is required to resolve muon energies down to 1GeV/c, and position to ∼3.5cm
along each axis.

2.8.2 IFR Design

The IFR is the outermost subsystem of the BABAR detector and is the main support

for the other subsystem structures. The steel flux return is instrumented with

resistive plate chambers (RPCs). It is made from 19 layers of RPCs in the barrel,

each split into 3 modules in the z direction. The endcaps have 18 layers each split

horizontally into 6 modules as seen in Figure 2.16. There are an additional two

cylindrical layers placed between the EMC and the magnet cryostat to help link

EMC clusters to IFR tracks.

The RPCs detect streamers from capacitive readout strips. Each RPC consists of a
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Figure 2.16: Diagram showing IFR barrel and endcap geometry, all dimen-
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Figure 2.17: Cross-section of a RPC

pair of 2mm bakelite layers sandwiching a gas mixture of 57% argon, 39% freon and

4% isobutane (see Figure 2.17). The outer face of each bakelite sheet is coated with

graphite, then an insulation layer. Outside that is a layer of aluminium readout

strips (labelled X and Y strips on Figure 2.17), one side having strips in the z

direction and the other side having strips to measure φ. The strips have a pitch of

49



2.9. The Trigger 50

between 2.17-3.85cm.

2.8.3 IFR Performance

BABAR has had ongoing problems with the IFR system. In summer 1999 it gave

a mean muon efficiency of 90% over a momentum range of 1.5-3.0GeV/c, but over

time this quickly deteriorated. By the end of spring 2002 the efficiency had fallen to

∼65%. ‘Dead’ RPCs have been removed and examined, but no definitive conclusion

could be drawn as to why they failed.

The endcap RPCs were replaced in summer 2002 by more efficient double-gap cham-

bers, but five layers have been replaced with brass to increase absorbency. Six layers

in the barrel have also been replaced with brass, with the remaining active layers

being replaced by Limited Streamer Tubes (LSTs) which are described in [43]. Two

sides of the hexagonal barrel were installed in summer 2004, with the remaining four

due to be installed in summer 2006.

The endcap upgrade has restored its average efficiency to 90% and the installed

LSTs also show 90% efficiency.

2.9 The Trigger

The trigger system is used to filter interesting physics events from a substantial

background noise, thus reducing the data flow to a manageable rate for storage

and off-line processing. Interesting physics events include BB, qq and τ+τ−. The

backgrounds come from Bhabha events, radiative Bhabha events, beam backgrounds

(described in Section 2.2.2) and two photon events.
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The BABAR trigger system comprises the Level 1 (L1) hardware based trigger, which

then passes events to the Level 3 (L3) software trigger. Any events that pass the L3

trigger are then stored by the data acquisition system.

2.9.1 The Level 1 Trigger

The PEP-II bunch crossing rate is about 238MHz. The L1 trigger is required to

reduce the event rate to less than 2kHz. It has two main subsystems, a drift chamber

trigger (DCT) and an electromagnetic calorimeter trigger (EMT). There is also an

instrumented flux return trigger (IFT) which is mainly used for diagnostic purposes.

The DCT looks for short tracks, long tracks and high pT tracks, while the EMT

analyses the summed energy of groups of calorimeter crystals. This information is

then passed to the global trigger (GLT) and if the correct criteria are met the event

is passed to the L3 trigger.

BB events are accepted with 99.9% efficiency. The L1 trigger typically passes events

at a rate of 1kHz.

2.9.2 The Level 3 Trigger

The L3 trigger has access to the complete event information. It is required to further

reduce the rate to 100Hz, which is the rate that the On-line Prompt Reconstruction

system (OPR) can accept data. A detailed reconstruction of the event is made and

selection is based on simple track-cluster topologies.

To keep control of high cross-section processes, like Bhabha scattering, pre-scaling

factors are applied. The main physics output from the L3 trigger (BB, qq, τ+τ−,

µ+µ−) is around 13% of the total event rate. QED and two-photon events constitute
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11% and calibration samples a further 40%. The rest of the output is comprised of

unidentified Bhabha and beam backgrounds, diagnostic information, random trig-

gers and cosmic rays.

2.10 The Data Acquisition System (DAQ)
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Figure 2.18: A schematic of the data acquisition process at BABAR.

The goal of the DAQ system is to transport event data with the minimum of dead

time. The front-end electronics take data from each of the detector subsystems and

perform some amplification and signal shaping before feeding the data to the VME

crates (VME is a computer bus standard, Versa Module Eurocard). These in turn

perform some initial high level feature extraction for the L1 trigger. After a L1

“accept” the data are passed through to the L3 trigger. If the L3 criteria are also

met the data are sent to be stored on disk.
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3
Data Reconstruction

& Event Selection

3.1 Introduction

For any analysis it is important to maximise the signal while minimising the back-

ground. This chapter focuses on the data sample that is used for the subsequent

analysis, how the events are reconstructed and the methods of background suppres-

sion.
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3.2 Data Sample

The dataset used in this analysis is the aggregate of all data taken at BABAR up

until the end of running in July 2004. This corresponds to 210.6 fb−1 taken at the

Υ (4S) resonance, which contains approximately 231.8 million BB pairs. There is

an additional 21.6 fb−1 taken “off-resonance” (40MeV below Υ (4S)) that is used for

background studies.

3.2.1 B Counting

Determining the number of BB pairs (NBB) contained within the data sample is

essential for making accurate branching fraction measurements. The B counting

method looks at the difference between data taken at the Υ (4S) resonance and the

off-resonance data. Figure 3.1 shows the increase in multi-hadronic events between

off and onresonance. Once any energy dependency of the continuum is taken into

account this increase is entirely due to Υ (4S) production. For simplicity (and be-

cause it is within errors) it is assumed that the branching fraction for Υ (4S)→ BB

is 100%.

The total number of B events is given by:

NBB = NΥ (4S) =
1

εΥ (4S)

(
NMH(on)−NMH(off)κ

Nµµ(on)

Nµµ(off)

)
, (3.1)

where NMH is the number of multihadron events, Nµµ is the number of µ+µ− events,

εΥ (4S) is the selection efficiency for Υ (4S) from the multihadron cuts, and κ is a

constant that takes into account the energy dependence of background events passing

the multihadron selection. As selection successfully rejects most background κ ∼ 1.
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Figure 3.1: The ratio of multi-hadronic to Bhabha events (r) versus the

centre-of-mass energy (
√
s). The energy scale is offset to put the Υ (4S) mass

(10580MeV) at zero. The dashed line shows the BB production threshold.

Using this method the total number of BB events in the July 2004 dataset is cal-

culated to be:

NBB = (231.8± 2.6)× 106 (3.2)

3.2.2 Monte Carlo Simulation

Simulated data are used in this analysis for background studies and efficiency cal-

culations.

The first step in simulation is event generation. An overall framework interface

program controls the various event generator modules, the most important of which

is EvtGen [44] which generates BB events and hadronic continuum (qq where q = u,

d, s or c) events by calling JETSET [45]. Many other generators exist, e.g. a 2-photon

generator, a Bhabha generator, but none of these are directly used in this analysis.
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As part of the event generation process the beam energies and the x-y co-ordinates

of the collision point are smeared with a Gaussian function over ranges of 160 µm

and 6 µm respectively. The z distribution covers a much larger range of 1 cm and

is taken to be flat.

The generated four-vectors are fed into a detector simulation package. The BABAR

detector is modelled by a custom interface to the CERN package Geant4 [46] which

simulates the passage of particles through matter. The output from these packages

is a series of detector hits, which are then passed on to SimApp which simulates the

actual detector response and gives output that mimics the real electronic output of

the BABAR detector, including a full simulation of the trigger. Detector conditions

such as dead channels are continually recorded during machine running and then

this conditions database is used by SimApp to make the final MC as realistic as

possible.

At this stage real background events are sometimes overlaid onto the simulated

events to model the effect of beam backgrounds. During detector running random

triggers are stored for this purpose - their randomness meaning that it is unlikely

for them to be signal events.

The final stage in MC production is to run the simulated raw data through the same

reconstruction process as is used for real data. The only difference being that MC

truth information is also processed.

3.3 Event Reconstruction

Data taking at BABAR is split up into runs of ∼30 minutes. When each run is

completed the stored data are sent to be processed by the On-line Prompt Recon-

struction (OPR) system. OPR consists of two procedures, firstly Prompt Calibration
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(PC) and later Event Reconstruction (ER).

The PC step performs a rolling calibration of the detector conditions. It is “rolling”

such that conditions from one run are used for the calibration of the subsequent

run. This means that if a calibration error is found all data recorded after the fault

must be reprocessed in order.

The ER step carries out a full reconstruction of each event using the calibrations

from the PC step. If a processing error is found in the ER step only the affected

run will need reprocessing.

Both the PC and ER operations produce data quality output in the form of sub-

system specific histograms, which are checked both by automated procedures and a

more detailed manual approach if problems are found.

3.3.1 Track Finding

Track finding at the OPR level examines initially the tracks found by the L3 trigger

in the DCH. The hits associated with these tracks are then fed into a Kalman fit [47]

- essentially a least squares fit which takes into account the material and variations

in the magnetic field. If any additional DCH hits are found to be consistent with

the track they are added in. Further fits are performed looking for tracks that do

not originate from the interaction point and for tracks that do not penetrate the

entire DCH.

Each track is then extrapolated back to the SVT and any consistent hits are added

in. A final search is performed on the SVT data to look for low momentum tracks

that didn’t reach the DCH.

This analysis uses tracks from BABAR’s GoodTracksLoose list which contains tracks
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that satisfy the following criteria:

¦ A minimum transverse momentum of 0.1 GeV/c

¦ A maximum momentum of 10.0 GeV/c

¦ At least 12 drift chamber hits associated to the track

¦ d0 < 1.5 cm

¦ z0 < 10 cm

where d0 is defined as the distance in the x-y plane to the z-axis and z0 is the

distance in the z direction to the origin. Both d0 and z0 are defined at the point of

closest approach of the track to the z-axis.

3.3.2 Calorimeter Cluster Finding

The first step in looking for calorimeter clusters is to do a scan for crystals with

energy deposits of greater than 10MeV. Any neighbouring crystals with energy

greater than 1MeV are then also added, and similarly the crystals surrounding the

cluster are then also examined and added if their energy is high enough. This is

repeated until no further adjoining crystals can be found.

To try and discern whether a cluster contains more than one incident particle a

“bump” finding algorithm is run. This checks whether the cluster contains more

than one peak in the energy distribution. Finally the bumps are matched with any

nearby tracks. If the separation distance is within a threshold then the bump and

track are considered as the same particle for further reconstruction purposes.
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3.3.3 Particle Identification (PID)

Particle identification is the next step in reconstruction. This analysis is concerned

with kaon identification and eliminating the possibility of the track coming from a

different charged particle.

3.3.3.1 Kaon identification

For kaon identification this analysis uses the BABAR SMS kaon selector [48]. It

uses data from the Silicon Vertex detector (SVT), Drift Chamber (DCH) and the

Cherenkov light detector (DIRC) to determine the probability that each track orig-

inated from a kaon. There are five different output modes ranging in efficiency and

purity; very loose, loose, not a pion, tight and very tight. For this analysis the tight

mode is used. The tight cuts are optimised to keep the misidentifcation level below

5% up to momenta of 4 GeV/c.

Figure 3.2: Particle momentum distribution versus dE/dx for the SVT (left)

and DCH (middle), and versus Cherenkov angle (θC) for the DIRC (right) [48].

The Bethe-Bloch formula [49] approximates the ionization-energy loss (dE/dx) of

particles travelling through matter. Figure 3.2 shows the dE/dx distributions for

various particles in the SVT and DCH. Data control samples (e.g. φ→ K+K−) are
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used to calibrate a Gaussian probability density function (PDF) for each particle

type in both the SVT and DCH systems. dE/dx measurements give a better than

2σ separation between kaons and pions up to ∼0.6 GeV/c in the SVT and up to

∼0.7 GeV/c in the DCH. The DCH also gives 2σ separation above 1.5 GeV/c due

to the relativistic rise (see Figure 2.10).

The DIRC provides PID for most of the momentum range (> 0.6GeV/c). It gives

at least 2σ separation up to 4 GeV/c (see Figure 2.13). The distribution of the

Cherenkov angle, θC , for different particles can be seen in Figure 3.2. θC is given

by:

θC = E/pn, (3.3)

where E is the particle energy, p is its momentum and n = 1.473 is the refractive

index of the DIRC silica bars. The measured angle is compared to expected angles

for different particles at the measured momenta.

Low momentum tracks emit few Cherenkov photons making the angle hard to mea-

sure. In these cases a likelihood is calculated from the number of photons. The

distribution for the number of photons produced by a specific particle path through

the DIRC is Poissonian and depends upon the particle mass, charge, momentum

and the position of the track in the detector. Gaussian and Poissonian PDFs are

calibrated using data control samples.

The identification of charged kaons is complicated by kaon decay (about 20% decay

before reaching the DIRC) and interactions with detector material. Figure 3.3 shows

DIRC measurements of Monte Carlo kaon tracks. Low momentum kaons show up

in the pion band with a large spread. These decayed or interacted before reaching

the DIRC. Region D in the diagram shows kaons that have interacted, setting free

real protons, before reaching the DIRC.

As an example of how the selector works lets look at the Cherenkov angle distribution
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Figure 3.3: The distribution of Cherenkov angle against momenta for Monte

Carlo kaon tracks. Tracks in the triangle B are excluded by the tight selector.

Region A shows tracks for which there is no angle information (8% due to solid

angle coverage of the DIRC and some due to small numbers of photons or a

bad fit) [48].

for kaons and pions. Assuming that the distributions follow a Gaussian function

centred on θK or θπ the pulls are defined:

∆i =
θC − θi
σθC

, (3.4)

where i = K, π. Figure 3.4 shows ∆K centred at zero and ∆π shifted to a higher

central value, corresponding to the separation between the mean values of θK and

θπ. The overlap between the two distributions shows how some kaons will be lost

and a fraction of the pions will be misidentified. The likelihood calculation combines

the Gaussian distributions from the SVT and DCH with Gaussian and Poissonian

distributions from the DIRC. The details of the DIRC likelihood fit can be found

in [48].
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Figure 3.4: A plot of ∆K with a cut at rπ = 1. The kaon distribution is

shown in red and the pion distribution is shown in green.

Table 3.1 shows the minimum requirements for the SMS kaon selector. The tight

cuts then add the following requirements:

¦ Triangle B, shown in Figure 3.3 is excluded

¦ likelihood cut: lK > rπlπ and lK > rplp

¦ rp = 1

¦ p < 2.7 GeV/c: rπ = 1

¦ p > 2.7 GeV/c: rπ = 80

¦ 0.5 < p < 0.7 GeV/c: rπ = 15

where ri is the ratio NK/Ni, and so rπ = 15 is a tighter cut than rπ = 1. The

performance of the tight SMS kaon selector is shown in Figures 3.5 and 3.6.
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Table 3.1: Kaon selection requirements [48].

Detector Momentum range Requirements

SVT dE/dx 0.025 < p < 0.7 GeV/c > 3 dE/dx sample hits

p > 1.5 GeV/c

DCH dE/dx 0.090 < p < 0.7 GeV/c > 10 dE/dx sample hits

p > 1.5 GeV/c

DIRC N(photons) 0.6 < p < 10 GeV/c expected number of

θC photons for e− > 0
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Figure 3.5: Kaon selection efficiency versus momentum for data and Monte

Carlo using the tight kaon selector [50].
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Figure 3.6: Particle mis-ID selection efficiency versus momentum for data

and Monte Carlo using the tight kaon selector. Top row: pion selection, sec-

ond row: proton selection, third row: muon selection, bottom row: electron

selection [50].

64



3.4. Discriminating Variables 65

3.3.3.2 Electron Identification

Information from the EMC, DCH and DIRC is used when reconstructing electrons.

The EMC measures the energy and shape of the electromagnetic shower. The DCH

provides dE/dx information and the DIRC gives Cerenkov angle measurements,

although they are only used below 1.5GeV/c.

3.4 Discriminating Variables

3.4.1 The ∆E and mES variables

Operating at the Υ (4S) resonance and requiring that it decays to BB gives certain

constraints that can be exploited to eliminate background events. ∆E is defined:

∆E = E∗
B − E∗

beam (3.5)

where E∗
beam =

√
s/2 and s is the square of the centre of mass energy in and E∗

B

is the reconstructed energy of the B candidate, again measured in the CM frame.

mES is defined:

mES =
√
E∗2
beam − ~p∗2B (3.6)

where ~p∗B is the momentum of the B candidate in the CM frame.

An advantage of using these two variables is that they are almost uncorrelated. Also

they are less affected by detector resolution than comparable variables such as the
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reconstructed mass of the B candidate. The advantages are discussed at length in

[51].

For correctly reconstructed B mesons mES forms a peak at the B mass (5.279GeV)

and ∆E forms a peak about zero. In both cases the large background from hadronic

continuum events should be non-peaking. Any background that originates from BB

events may form well reconstructed B’s and so will peak in mES – this is a small

effect.

3.4.2 cos θThr

Thrust is a topological variable. The thrust axis is the line along which the longitu-

dinal momenta of a collection of particles is maximised [52]. BB events are generally

isotropic across the detector, whereas qq events tend to form two back-to-back jets.

θThr is defined as the angle between the thrust axis of the reconstructed B candidate

and the thrust axis of the rest of the event (ROE). Taking the cosine of this gives a

variable that is flat for data and peaking at ±1 for qq background, see Figure 3.7.

3.4.3 Fisher Discriminant (F)

A Fisher discriminant [53] combines many different variables, that on their own

do not have much discriminating power, to form one variable with much greater

distinguishing power. Another method to achieve this would be to use a neural net

but it had no greater distinguishing power in this analysis. The Fisher discriminant

can be defined as:

F =
∑

i

aixi = ~aT~x, (3.7)

where xi are some discriminating variables and ai are coefficients chosen to maximise
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Figure 3.7: The |cos θThr| distribution for B± → K±K∓K± nonresonant MC

(blue/solid line) and off-peak data (red/dashed line). The samples have been

normalised to the same number of events. A pre-selection cut at 0.9 is applied

to both sets of data.

the separation between signal and background events. In this case the variables used

are:

¦ L0 and L2, two variables based on Legendre polynomials. They are defined as:

L0 =
ROE∑

i

pi (3.8)

L2 =
ROE∑

i

pi ×
1

2
(3 cos2(θi)− 1) (3.9)

where pi is the momentum and θi is the polar angle of the track or cluster

measured relative to the thrust axis of the B candidate in the CM frame.

¦ cos θBmom, where θBmom is the angle between the sum of the B candidate

momentum and the beam in the CM frame.
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¦ cos θBthr, where θBthr is the angle between the B candidate thrust axis and

the beam in the CM frame.

¦ TFlv is the output of the B tagging algorithm [54]. By studying particles

from the ROE, which is assumed to be a second B event, the TFlv variable

estimates the flavour of the B candidate. A value towards 1 indicates a high

probability of correct flavour tagging, whereas a value near 0 indicates that

no decision could be made. When looking at non-B decays it gives noticeably

different results in these two areas.

For distributions of all the variables and the Fisher discriminant see Figure 3.8.

3.5 Event Selection

The full dataset goes through three stages of filtering before the reduced final dataset

is established. Using three stages reduces repetition of work by different analyses,

for example a B± → π±π∓π± analysis can use the same data after two stages as

B± → K±K∓K± analyses.

The selection for the first stage, skimming, is determined by the BABAR 3-Body

Charmless working group. It is designed to be generic to many 3-body decays. The

skims are run centrally by the collaboration.

The second stage uses NonCharm3BodyUser [55], a package built upon the BABAR

framework, to further filter the skims into Root [56] ntuples. This stage is generic to

B± → h±h∓h± analyses (where h = π or K) and is run in batch jobs by members

of the 3-Body Charmless group.

The final stage uses bespoke code based on the CharmlessFitter package to single
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Figure 3.8: The distributions of the Fisher discriminant and its component

parts. Top left: L0. Top right: L2. Middle left: cos θBmom. Middle right:

cos θBthr. Bottom left: TFlv. Bottom right: the Fisher discriminant. The

blue/solid line shows B± → K±K∓K± MC and the red/dashed line shows off-

peak data. The samples have been normalised to the same number of events.
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out B± → K±K∓K± candidates and produce reduced Root ntuples.

3.5.1 Skimming

The first level of analysis skims the full dataset looking for B candidates formed

from three charged tracks. The tracks are taken from the GoodTracksLoose list

as described in section 3.3.1. The full list of criteria that must be met by the B

candidate is:

¦ The total charge of the B candidate is required to be ±1.

¦ The total number of tracks in the event is required to be ≥ 4. This ensures

that there is at least one track from the other B in the event.

¦ The total energy of the event is required to be < 20GeV. This is a basic sanity

check (the centre-of-mass energy is only 10.58GeV), and removes less than 1%

of events.

¦ mES is required to be within 0.1GeV/c2 of the beam energy (5.29GeV/c2).

¦ ∆E is required to have an absolute value less than 0.45GeV.

Skims are defined by each of the different working groups in BABAR to be run

centrally. This reduces the repetition of similar jobs for each different analysis, e.g.

a B± → π±π∓π± analysis uses the same skim as this B± → K±K∓K± analysis. To

this end ∆E is actually calculated for all possible final state combinations (π±π∓π±,

K±π∓π±,K±K∓π±,K±K∓K± etc.) and the event passed if any combination passes

the above ∆E cut. The 3-Body Charmless working group defined the above skim.
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3.5.2 NonCharm3BodyUser ntuple production

NonCharm3BodyUser performs the following tasks:

¦ Vertexing of the B candidates after which ∆E and mES are recalculated.

¦ Vertexing then re-done with a B mass constraint applied – the tracks are

varied within their errors and the event is retained if a B-mass constrained

vertex is found.

¦ Particle ID selectors are run.

¦ Calculation of cos θThr, L0, L2, cos θBmom, cos θBthr and TFlv.

¦ Calculation of Dalitz plot quantities such as the invariant mass of the different

particle combinations.

¦ |∆E| is required to be less than 0.35GeV.

¦ |cos θThr| is required to be less than 0.95.

This stage is again used by multiple analyses and so the same care is taken with the

∆E cut as is described in Section 3.5.1.

3.5.3 Final Selection

The selection criteria for the final reduced ntuples are:

¦ Each candidate must have a valid kinematic fit for a K±K∓K± final state.

¦ Each kaon candidate track must pass the SMSKaonSelector in tight mode.
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¦ All tracks must fail the standard BABAR electron selector.

¦ |cos θThr| is required to be below 0.9.

¦ The value of the Fisher discriminant must be above -0.71.

¦ mES is required to be below the beam energy (5.29GeV/c2).

¦ The value of ∆E must be between -0.0683 and 0.0517GeV. This is chosen by

imposing a 3σ (0.06GeV) cut on the distribution. However a study of the ∆E

distribution in the control channel, B+ → D0π+, showed a shift of −8.3MeV

between data and MC. Therefore the selection window must be shifted by this

amount.

¦ The requirement of a single candidate per event is then imposed. If multiple

candidates exist, then one is chosen randomly so as not to bias the mES and

Dalitz plot distributions.

¦ The BB background channel, B+ → D0K+, D0 → K+K−, is also vetoed at

this stage, i.e. data in the region 1.80 < mK+K− < 1.90GeV/c2 is discarded.

3.5.3.1 Definition of Fitting Regions

The ∆E-mES Signal Strip defined above is further broken down into a Signal Box

and a Sideband which is used to characterise the background. The entire window

is used to determine the fractions of qq and BB background within the Signal Box.

The mES cuts for each region are:

¦ Signal Strip: 5.20 < mES < 5.29GeV/c2.

¦ Signal Box: 5.271 < mES < 5.287GeV/c2.

¦ Sideband: 5.20 < mES < 5.26GeV/c2.
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Figure 3.9: ∆E-mES plane, showing Signal Strip (all events), Signal Box

(solid blue line) and the Sideband (dashed red line).

This can be seen in Figure 3.9.

3.5.3.2 Selection Optimisation

The final selection for this analysis is broadly based upon the earlier B± → h±h∓h±

branching fraction analysis [17]. A different Fisher discriminant definition is used,

however, meaning that the cuts had to be re-optimised. cos θThr and the Fisher

discriminant are highly correlated and so cuts on them must be optimised together.

cos θThr is varied, and for each value the Fisher co-efficients are recalculated. The

signal significance S/
√
S +B is then calculated for a range of Fisher values, see

Figure 3.10. The dataset used in this study was a sample of B± → K±K∓K±

nonresonant MC, normalised using the world average [9] for the inclusive branching

fraction. The background used included both the off-peak dataset and on-peak data

from an upper sideband defined as:
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Figure 3.10: Signal significance as a function of Fisher selection value [57].

¦ 5.20 < mES < 5.26GeV/c2.

¦ 0.1 < ∆E < 0.3GeV,

but otherwise using the same criteria as laid out in Section 3.5.3.

3.5.3.3 Final Efficiencies

A summary of the selection requirements and their efficiencies for B± → K±K∓K±

nonresonant MC are shown in Table 3.2.
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Cut Signal MC Selection Efficiency

Reconstruction and preselection 0.640

Valid K±K∓K± vertex fit hypothesis 0.993

Kaon PID requirements 0.424

Electron PID veto 0.996

|cos θThr| < 0.9 0.866

F > −0.71 0.895

5.20 < mES < 5.29GeV/c2 0.994

−0.0683 < ∆E < 0.0517GeV 0.912

D0 veto, 1.80 < mK+K− < 1.90GeV/c2 0.951

Signal Strip: 5.20 < mES < 5.29GeV/c2 0.195

±3.41× 10−4

Signal Box: 5.271 < mES < 5.287GeV/c2 0.191

±3.39× 10−4

Sideband: 5.20 < mES < 5.26GeV/c2 2.31× 10−3

±4.27× 10−5

Table 3.2: Summary of average selection efficiencies. The Monte Carlo study

used 1.263 million B± → K±K∓K± signal events. The total efficiencies are

the total number of events passing the selection criteria divided by the total

number of input/generated events
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4
Analysis Method

4.1 Introduction

This chapter details how the dataset, as described in the previous chapter, is anal-

ysed. Topics covered include the specifics of the Dalitz fit, efficiency modelling,

background suppression techniques and details of the determination of the signal

model.
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4.2 The Dalitz Plot Fit

For Dalitz plot theory see Section 1.4.

A Root-based package named Laura++ [58], [59] was developed for the analysis of

charmless B± → h±h∓h± Dalitz plots (where h = π or K). Laura++ takes input

models for the signal, background and efficiency and then attempts to maximise a

likelihood function by floating the magnitudes and phases of the signal probability

density function in a fit. In reality the negative natural logarithm of the likelihood

function is minimised by two Minuit [60] fits, the first finding a quick estimate and

the second to produce a more precise fit. A third Minuit routine is then used to

calculate any possible asymmetric errors. The function to be minimised is:

− lnLTot = −
NTot∑

n=1

lnLn. (4.1)

where LTot is the total likelihood, NTot is the total number of events and Ln is the

per event likelihood. The unbinned per event likelihood function has the form:

L(x, y) = (1− fqq̄ − fBB̄)
|∑N

j=1 cje
iθjFj(x, y)|2ε(x, y)∫ ∫

DP |
∑N
j=1 cje

iθjFj(x, y)|2ε(x, y) dxdy

+ fqq̄
Q(x, y)

∫ ∫
DP Q(x, y) dxdy

+ fBB̄
B(x, y)

∫ ∫
DP B(x, y) dxdy

(4.2)

where

¦ x = m2
13(K

+K−) and y = m2
23(K

+K−) are the invariant mass-squared pairs

of the two possible charge-zero combinations of the three kaons.

¦ N is the number of resonant and nonresonant signal components in the plot.

¦ Fj is the dynamical part of the amplitude (the lineshape) of the component j.

¦ cj and θj are the magnitude and phase of the component j.
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¦ ε(x, y) is the reconstruction efficiency across the Dalitz plot.

¦ Q(x, y) is the distribution of qq continuum background across the Dalitz plot.

¦ B(x, y) is the distribution of BB background across the Dalitz plot.

¦ fqq and fBB are the fractions of qq and BB background events.

As there are two identical kaons in the final state the dynamical amplitudes, signal

efficiency and background distributions are symmetrised between x and y. Figure

4.1 shows the difference between a symmetrised and a randomly unsymmetrised

Dalitz plot.
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Figure 4.1: The Dalitz plot for the combined B+ and B− data sample. As

the axes are identical the Dalitz plot should be folded about x = y, as seen in

the right-hand plot. This also increases the statistics in the resonance bands.

Floating parameters in the fit are limited to the magnitudes and phases, cj and

θj. The fit is only sensitive to the relative magnitudes and phases between the

components, and so, to allow all of our fit results to be easily comparable with

each other, the coefficients of the nonresonant component are fixed in the fit to be

cj = 1.0 and θj = 0.0.

All background related parameters are held static in the fit using numbers and

models from detailed background studies, see Section 4.5. The efficiency model is
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also pre-determined from MC studies, see Section 4.3.

The lineshapes are normalised over the Dalitz plot such that

∫ ∫

DP
Fj(x, y)dxdy = 1. (4.3)

For the resonant contributions Fj is given by the product of the invariant mass and

angular distribution probabilities,

Fj = Rj(m)× Tj(cos θ), (4.4)

where Rj is the resonance mass term (e.g. Breit-Wigner) and Tj is the angular

probability distribution. The Zemach tensor formalism [61], [62] is used for the

angular distributions,

¦ Spin 0 particle: Tj(cos θH) = 1

¦ Spin 1 particle: Tj(cos θH) = −2~p · ~q

¦ Spin 2 particle: Tj(cos θH) =
4
3
[3(~p · ~q)2 − (|~p||~q|)2]

where ~p is the momentum of the resonance and ~q is the momentum of the daughter

kaon with the same charge as the resonance. Both are measured in the rest frame

of the resonance.

4.2.1 Fit Fractions

It is useful to quote the results as “fit fractions” rather than magnitudes and phases

because separate analyses may use different amplitude, phase and normalisation

conventions. A fit fraction quantifies how much of the Dalitz plot is made up by

a component. These fractions do not necessarily sum to unity however, due to

interference between components. The fit fraction of a component j is given by:
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(Fit Fraction)j =

∫ |cjeiθjFj(x, y)|2dxdy∫ |∑j cje
iθjFj(x, y)|2dxdy

. (4.5)

4.2.2 CP Asymmetry

The CP asymmetry of the total rate is found by measuring the number of signal

events in the B+ and B− samples. This is done by fitting to the mES distribution

of each sample while taking into account knowledge of the signal and background

mES distributions (see Section 4.5.3). The asymmetry is then given by:

A =
N−
sig −N+

sig

N−
sig +N+

sig

, (4.6)

where N−
sig and N

+
sig are the the number of signal events in the B− and B+ samples

respectively.

To measure the CP asymmetry for each resonance the B+ and B− Dalitz plots are

fitted separately. The fit fractions from the two fits are then combined with the

total numbers of signal events such that:

AFF
j =

FF−
j N

−
sig − FF+

j N
+
sig

FF−
j N

−
sig + FF+

j N
+
sig

, (4.7)

where FF−
j and FF+

j are the fit fractions for a resonance j in the B− and B+

datasets respectively.

4.3 Efficiency Modelling

The signal reconstruction efficiency is the fraction of signal events that pass the data

reconstruction and event selection as detailed in Chapter 3. The average reconstruc-

tion efficiency for B± → K±K∓K± events as given by Monte Carlo (MC) is shown
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in Table 3.2. However the efficiency distribution across the Dalitz plot need not be

flat.
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Figure 4.2: Efficiency distribution across the Dalitz plot. The left hand plot

shows B+ events, the right hand plot shows B− events [57].

The variation of the efficiency across the Dalitz plot is studied using a sample of 1.314

million B± → K±K∓K± MC events which are generated to have a flat distribution

across phase space. These events are passed through the reconstruction software and

then must pass the analysis selection criteria. The D0 veto is not applied however,

to ensure that the whole Dalitz plot is populated. 260,191 events are selected in the

Signal Box region.

A further constraint is then applied where each event must be “truth matched”. A

truth matched event is a real, correctly reconstructed B± → K±K∓K± event, i.e.

the three kaons must originate from the same B meson and they must be the only

daughters of the decay. This reduces the dataset to 258,572 events.
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These events are then used to populate a numerator Dalitz plot histogram. At

this stage efficiency corrections taking into account the reconstruction differences

between MC and real data are applied. MC truth information from the complete

dataset of 1.314 million events is used to plot a denominator histogram and the quo-

tient then gives the efficiency distribution to be used in the Dalitz fit. A comparison

of the B+ and B− distributions can be seen in Figure 4.2.

As both distributions are consistent the histograms are merged to give greater sta-

tistical accuracy. Some bins around the edge of the plot have large errors caused

by low bin content. This effect is avoided by merging the lowly populated bin with

a neighbouring bin in both the numerator and denominator histograms and then

recalculating the efficiency for the larger sized bin. The final efficiency histogram

can be seen in Figure 4.3.

To correct for any further statistical fluctuations in the plot linear interpolation is

performed by Laura++.

The distribution is essentially flat, but with a drop off toward the corners. These

regions contain events with one low energy kaon, making them more challenging to

reconstruct.

4.3.1 Self Cross-feed

Self Cross-feed (SCF) is when one or more of the signal kaons is interchanged during

reconstruction with particles from the decay of the other B meson in the event. This

corresponds to the non-truth matched events from the efficiency study, see Section

4.3, which is a dataset of 6,255 events. In the Signal Box this is further reduced to

1,619 or 0.6% of all reconstructed B± → K±K∓K± decays.

82



4.4. Event Migration Effects 83

)4/c2 (GeV-K+K
2M

0 2 4 6 8 10 12 14

)4
/c2

 (
G

eV
-

K
+

K2
M

0

5

10

15

20

25

30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 4.3: Efficiency distribution, corrected for low statistics bins [57].

Figure 4.4 shows the Dalitz plot distribution of SCF events for B+ and B− to be

the same. As the fraction is very small and concentrated in the extreme corners of

the Dalitz plot the effect of SCF is neglected in the fit.

4.4 Event Migration Effects

Migration is the movement of an event from its true position to its reconstructed

position in the Dalitz plot. If migration moves the events far it could blur resonance

shapes and limit the accuracy of the fit.

A sample of 1.314 million B± → K±K∓K± flat nonresonant MC events is used to
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Figure 4.4: Dalitz distribution of SCF events. The left hand plot shows B+

events and the right hand plot shows B− events [57]. The colour scale shows

the number of SCF events per bin as a fraction of the total events in each bin.

study migration effects. The difference between the MC truth and reconstructed

positions gives the magnitude of the migration, as defined:

dmigration =
√
(mtruth

13 −mreco
13 )

2
+ (mtruth

23 −mreco
23 )

2
(4.8)

The migration distance is then plotted in two histograms, an “outflow” histogram

plots events at their MC truth positions to show from where events move, and an

“inflow” histogram plots the events at their reconstructed positions, showing where

events move to.

Figure 4.5 shows both inflow and outflow histograms to be uniform in nature, with

the average migration being very small in magnitude. As such migration effects are

neglected in the amplitude fit.
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Figure 4.5: Migration of events within the Dalitz plot; the left hand plot

shows inflow, the right hand plot shows outflow. The colour scale shows

d̄migration in units of GeV
2/c4 [57].

4.5 Background Estimation

There are two distinct types of background to be modelled, light quark qq back-

ground and BB background. This section discusses both types in detail and also

the determination of the signal to background ratio.

4.5.1 qq Background

Almost three times more qq events are produced at BABAR than BB events. These

events can produce three kaons (or particles merely identified as kaons), which can

then be misreconstructed as signal B± → K±K∓K± events. Continuum qq events

provide the greatest source of background for this analysis.
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BB events are isotropic in shape, whereas qq have a collimated back-to-back struc-

ture. Exploiting this topology difference and also using constraints given by operat-

ing at the Υ (4S) resonance (cuts on ∆E and mES) removes most of this background,

see Sections 3.5 and 3.4. The distribution of the remaining qq events can be seen in
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Figure 4.6: Dalitz plot distributions for continuum (qq) background events.

The left plot is the B+ distribution and the right is B−. The colour scale

shows the number of events expected per bin in the data sample.

Figure 4.6. The histograms are generated using Sideband data combined with off-

resonance data to increase statistics. The correct fraction of BB background is then

subtracted using numbers from Section 4.5.3 and the BB distribution histograms

from Section 4.5.2.

Along the edges of the qq Dalitz plot is a φ(1020) resonance. As the φ is so thin

(∼4MeV) a very finely binned histogram is needed to correctly model it. After many

unsuccessful tests with various bin sizes it was decided to move the plot to a different

co-ordinate system to inflate the region around the φ. The new co-ordinates m′ and

θ′ are defined as

m′ =
1

π
cos−1

(
2(m++ −m++(min))

m++(max) −m++(min)

− 1

)

θ′ =
1

π
θ++, (4.9)

where m++ is the invariant mass of the like-sign kaon pair, m++(max) = mB −mK ,
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Figure 4.7: Square Dalitz plot distributions for qq background events. 250×
250 binning is used over the φ(1020) region and 30×30 binning elsewhere. The
left plot is the B+ distribution and the right is B−. The colour scale shows

the number of events expected per bin in the data sample.

m++(min) = 2mK and θ++ is the helicity angle between either of the like-sign kaons

and the B momentum in the like-sign kaon rest frame. Both of the new co-ordinates

vary from 0 to 1 giving a square plot. Figure 4.7 shows the distributions in the

square co-ordinates. The histogram is binned in a 250×250 grid to give good detail

in the φ(1020) region. The bulk of the plot is sparsely populated and so bins are

merged and averaged to give pseudo 30× 30 binning.

4.5.2 BB Background

The B± → K±K∓K± decay mode suffers from relatively little BB background due

to the tight PID constraints given by three kaons. What B background there

is comes mainly from the misidentification of pions as kaons in high branching

fraction D decays. However there are also some background modes that give a

K±K∓K± final state such as B+ → J/ψK+ (J/ψ → K+K−) and B+ → D0K+

(D0 → K+K−). Some B0B0 events get misreconstructed to K±K∓K±, usually

involving both misidentification of one or more particles and a particle being lost,
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e.g. B0 → K+K−K0
S

where K0
S
→ π+π−.
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Figure 4.8: Dalitz plot distributions for BB background events. The left

plot is the B+ distribution and the right is B−. The colour scale shows the

number of events expected per bin in the data sample.

To determine the B decay modes that contribute significantly to backgrounds in

the Signal Box large samples of generic BB MC were studied. 174 million B+B−

events and 148 million B0B0 events were processed and the MC truth information

studied to determine the contributing decay modes. A set of exclusive MC was then

generated for each individual background mode. After reconstruction and event

selection the efficiencies were determined and using known branching fractions the

expected number of events were calculated. Branching fractions were taken from

either the Heavy Flavor Averaging Group tables or the Particle Data Group [9].

The sets of MC for each individual background mode were then summed together

into one histogram giving the the overall BB background distribution. Figure 4.8

shows the normal Dalitz plot distribution and Figure 4.9 shows the distribution in

the square co-ordinates. Tables 4.1-4.3 show the branching fractions, efficiencies and

expected numbers of events for each B background mode.
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Table 4.1: B+B− background modes, with branching fractions, efficiencies

and number of expected events. Continued in Table 4.2

Mode BF Efficiency (%) Number of Expected Events

(10−6) Signal Strip Signal Box Signal Strip Signal Box

B+ → K+K−π+ < 6.3 0.4280 ± 0.0057 0.2384 ± 0.0043 6.3 ± 6.3 3.5 ± 3.5

B+ → K+π−π+ 4.9 ± 1.5 0.0134 ± 0.0010 0.00285 ± 0.00047 0.152 ± 0.048 0.032 ± 0.011

B+ → π+π−π+ 10.9 ± 3.7 0.00095 ± 0.00021 0.00072 ± 0.00018 0.0239 ± 0.0097 0.0182 ± 0.0077

B+ → K∗0
0 (1430)π+; K∗0

0 (1430)→ K+π− 32.3 ± 3.1 0.0124 ± 0.0026 0.0051 ± 0.0017 0.93 ± 0.22 0.38 ± 0.13

B+ → J/ψK+; J/ψ → K+K− 0.24 ± 0.03 19.987 ± 0.074 19.797 ± 0.074 11.0 ± 1.5 10.9 ± 1.5

B+ → K0
S
K+; K0

S
→ π+π− < 0.41 0.0154 ± 0.0029 0.0044 ± 0.0016 0.015 ± 0.015 0.0042 ± 0.0042

B+ → D0K+; D0 → K+K− 1.4 ± 0.2 0.581 ± 0.015 0.1776 ± 0.0084 1.94 ± 0.33 0.59 ± 0.10

B+ → D0K+; D0 → K+π− 14.1 ± 2.3 0.448 ± 0.011 0.1669 ± 0.0068 14.6 ± 4.2 5.4 ± 1.6

B+ → D0K+; D0 → K+π−π0 48.1 ± 8.3 0.2063 ± 0.0090 0.0433 ± 0.0041 23.0 ± 4.1 4.82 ± 0.96

B+ → D0π+; D0 → K+K− 20.5 ± 1.4 0.0150 ± 0.0087 0.0 ± 0.0 0.67 ± 0.39 0.0 ± 0.0

B+ → D0π+; D0 → K+π− 189.2 ± 11.9 0.0139 ± 0.0025 0.0028 ± 0.0011 6.1 ± 1.2 1.22 ± 0.50

B+ → D0π+; D0 → K+π−π0 647.4 ± 54.8 0.0068 ± 0.0017 0.00161 ± 0.00080 10.2 ± 2.6 2.4 ± 1.2

Total B+B− backgrounds 116 ± 10 40.0 ± 4.7

Total B backgrounds 229 ± 21 65.4 ± 6.5
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Table 4.2: B+B− background modes continued from Table 4.1.

Mode BF Efficiency (%) Number of Expected Events

(10−6) Signal Strip Signal Box Signal Strip Signal Box

B+ → D∗0K+; D∗0 → D0π0; D0 → K+K− 0.87 ± 0.25 0.657 ± 0.047 0.103 ± 0.019 1.32 ± 0.39 0.208 ± 0.070

B+ → D∗0K+; D∗0 → D0π0; D0 → K+π− 8.5 ± 3.1 0.435 ± 0.012 0.1361 ± 0.0069 8.5 ± 3.2 2.67 ± 0.99

B+ → D∗0K+; D∗0 → D0π0; D0 → K+π−π0 29.0 ± 8.4 0.1142 ± 0.0097 0.0142 ± 0.0034 7.7 ± 2.3 0.95 ± 0.36

B+ → D∗0K+; D∗0 → D0γ; D0 → K+K− 0.53 ± 0.16 0.626 ± 0.016 0.1328 ± 0.0071 0.81 ± 0.24 0.164 ± 0.049

B+ → D∗0K+; D∗0 → D0γ; D0 → K+π− 5.2 ± 1.9 0.462 ± 0.013 0.1430 ± 0.0074 5.6 ± 2.1 1.73 ± 0.65

B+ → D∗0K+; D∗0 → D0γ; D0 → K+π−π0 17.8 ± 5.3 0.076 ± 0.014 0.0048 ± 0.0018 3.1 ± 1.1 0.39 ± 0.23

B+ → D∗0π+; D∗0 → D0π0; D0 → K+K− 11.1 ± 1.2 0.0306 ± 0.0046 0.0034 ± 0.0012 0.79 ± 0.14 0.122 ± 0.048

B+ → D∗0π+; D∗0 → D0π0; D0 → K+π− 108.2 ± 11.0 0.0159 ± 0.0026 0.00200 ± 0.00076 4.00 ± 0.77 0.86 ± 0.32

B+ → D∗0π+; D∗0 → D0π0; D0 → K+π−π0 370.2 ± 43.1 0.0051 ± 0.0012 0.0034 ± 0.0015 4.4 ± 1.2 1.72 ± 0.68

B+ → D∗0π+; D∗0 → D0γ; D0 → K+K− 6.82 ± 0.82 0.0224 ± 0.0039 0.0062 ± 0.0018 0.355 ± 0.075 0.054 ± 0.025

B+ → D∗0π+; D∗0 → D0γ; D0 → K+π− 66.6 ± 7.9 0.0182 ± 0.0031 0.00167 ± 0.00084 2.81 ± 0.58 0.96 ± 0.30

B+ → D∗0π+; D∗0 → D0γ; D0 → K+π−π0 227.8 ± 29.8 0.0050 ± 0.0014 0.0017 ± 0.0017 2.65 ± 0.84 0.88 ± 0.46

Total B+B− backgrounds 116 ±10 40.0 ± 4.7

Total B backgrounds 229 ± 21 65.4 ± 6.5
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Table 4.3: B0B0 background modes, with branching fractions, efficiencies

and number of expected events.

Mode BF Efficiency (%) Number of Expected Events

(10−6) Signal Strip Signal Box Signal Strip Signal Box

B0 → D−K+ 200 ± 60 0.0915 ± 0.0061 0.0199 ± 0.0028 42 ± 13 9.2 ± 3.0

B0 → D∗−K+ 200 ± 50 0.0992 ± 0.0063 0.0247 ± 0.0032 46 ± 12 11.4 ± 3.2

B0 → D∗−π+; D∗− → D0π−; D0 → X 1868 ± 142 0.00154 ± 0.00019 0.000379 ± 0.000095 6.66 ± 0.97 1.63 ± 0.43

B0 → D∗−ρ+; D∗− → D0π−; D0 → X 4942 ± 102 0.00019 ± 0.00013 0.0 ± 0.0 2.0 ± 1.5 0.0 ± 0.0

B0 → K+K−K0
S

12.4 ± 1.2 0.2136 ± 0.0098 0.0541 ± 0.0050 6.2 ± 1.3 1.57 ± 0.37

B0 → K+K−π0 19.0 ± 9.5 0.194 ± 0.012 0.0333 ± 0.0051 8.5 ± 4.3 1.47 ± 0.77

B0 → K+π−π0 36.6 ± 5.2 0.00707 ± 0.00055 0.00035 ± 0.00012 0.599 ± 0.098 0.029 ± 0.011

B0 → K+π− 18.2 ± 0.8 0.00043 ± 0.00015 0.000053 ± 0.000053 0.0180 ± 0.0064 0.0023 ± 0.0023

Total B0B0 backgrounds 112 ± 18 25.4 ± 4.5

Total B backgrounds 229 ± 21 65.4 ± 6.5
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Figure 4.9: Square Dalitz plot distributions for BB background events. The

left plot is the B+ distribution and the right is B−. The clearly visible unpop-

ulated bands correspond to the D0 veto. The colour scale shows the number

of events expected per bin in the data sample.

4.5.3 Determination of the Signal to Background ratio

The fractions of qq and BB background within the Signal Box are determined by

a fit to the mES distribution in the Signal Strip. In this fit the signal is modelled

by a double Gaussian function, the parameters of which are given by a fit to truth-

matched B± → K±K∓K± nonresonant MC, see Figure 4.10. The qq background is

modelled with an Argus function [63]. The end-point of the Argus function is set

to the B mass and the shape parameter is floated in the fit. An example Argus

fit is shown in Figure 4.11. BB background has both peaking and non-peaking

components and as such is modelled by a combination Argus + Gaussian functions,

see Figure 4.12. The parameters are fixed using BB background MC.

The numbers of signal and qq events are floated in the fit, but the number of BB

background events is fixed from earlier studies. The results of the full mES fit can

be found in Section 5.6.
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Figure 4.10: The mES distribution of B
± → K±K∓K± nonresonant MC

events. The blue line shows the double Gaussian fit.
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Figure 4.11: The mES distribution for off-resonance data, fitted with an

Argus function.
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Figure 4.12: The mES distribution of the BB background. The line shows

the Argus + Gaussian fit.

4.6 The Signal Model

To determine the makeup of the signal model the resonant structure of the data

had to be examined. Figure 4.1 shows the Dalitz plot and Figure 4.13 shows mass

projections of the selected Signal Box events. As both B+ and B− datasets are

very similar the combined dataset is used in all signal model studies to increase the

statistical accuracy. Figure 4.14 shows projection plots of the combined dataset.

A clear φ(1020) signal can be seen near 1GeV/c. The χc0 is seen just below 3.5GeV/c

(in both mass projections) and the non-χc0 structure visible in the heavy-pair mass

projection is mostly the reflection of the φ(1020).

The nature of the wide resonance located around 1.5GeV/c is unknown. No matching

particle is found in the Particle Data Group tables [9]. It is discussed in detail in

Section 4.6.1.
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Figure 4.13: Comparison mass projection plots for opposite-sign kaon pairs

in the B+ and B− data samples. The solid red line shows B+ events and the

dashed black line shows B− events. The left-hand plot shows the light mass

pairs and the right-hand plot shows the heavier mass pairs from the folded

Dalitz plot.

Other than these three obvious resonances a non-peaking f0(980) contribution is

expected as well as B± → K±K∓K± nonresonant events. The φ(1680) resonance is

also included in the final signal model as it was found to help stabilise the fit.

The signal model therefore has has six components:

¦ B± → K±K∓K± (nonresonant)

¦ B± → f0(980)K
±

¦ B± → φ(1020)K±

¦ B± → (KK)00K
±, where (KK)00 is a scalar resonance with a mass ∼1.5GeV/c.

¦ B± → φ(1680)K±

¦ B± → χc0K
±
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Figure 4.14: Mass pair projection plots for the complete dataset. The top

row shows the data and background model, and the bottom row shows the

events left after subtracting the background from the data. The left-hand

plots show the light KK pair and the right-hand plots show the heavier pair.

The data are represented by the black points and black line. The solid red

histogram shows the qq background model and the solid green histogram shows

the BB background model.
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All resonances except for the f0(980) are modelled using relativistic Breit-Wigner

lineshapes. The f0(980) is modelled using the Flatté model [27] (a coupled Breit-

Wigner) and the nonresonant contribution is described by an empirical model. These

models are described in Sections 4.6.2, 4.6.3 and 4.6.4.

Other resonances that were considered include the f2(1270), f0(1370), f0(1500) and

f ′2(1525).

4.6.1 The (KK)00

The component named (KK)00 was included as a way of modelling a prominent

resonant structure around 1.5GeV/c2. It is taken to be a scalar for the following

reasons:

¦ The helicity distribution for this region is flat except for an enhancement

towards cos θH = 1, see Figure 4.15. Looking at Figure 4.15 one might think

that a scalar combined with a vector would give the best fit, but it doesn’t.

The best fit comes with using a single scalar. Neither a vector nor tensor give

a good fit.

¦ A partial-wave analysis of this region has been performed [64], which indicates

a large s-wave contribution.

A likelihood scanning approach was used to determine its mass and width, see

Section 4.7.

The most obvious scalar resonance in this region that has an appreciable decay

rate to K+K− is the f0(1500). This resonance was tried initially, but it was too

thin to give a good fit to the data. Additionally the f0(1500) has a branching
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Figure 4.15: Background subtracted, efficiency corrected cos θH plot of the

region mKK 1.35-1.62GeV/c2.

ratio of (8.6 ± 1.0)% to K+K−, compared to (34.9 ± 2.3%) to π+π− [9]. It would

therefore be expected to occur significantly in the decay B± → K±π∓π± if it occurs

in B± → K±K∓K±, but there is no f0(1500) signal seen in previous Dalitz plot

analyses of B± → K±π∓π± [32], [34]. This suggests that the resonance has a high

ss̄ content, such that it decays strongly to K+K−, but not to ππ.

The BELLE collaboration have also seen a comparable unknown resonance in their

Dalitz analysis of B± → K±K∓K± [34] and dealt with it similarly.

4.6.2 Relativistic Breit-Wigner

Most resonances can be modelled by a relativistic Breit-Wigner distribution,

Rj(m) =
1

(m2
0 −m2)2 +m2

0Γ
2(m)

, (4.10)
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where m is the reconstructed mass of the resonance, m0 is the actual mass and Γ(m)

is the mass-dependent resonance decay width, given by [65]:

Γ(m) = Γ0

(
q

q0

)2k+1 (
m0

m

)
f 2k (q)

f 2k (q0)
, (4.11)

where q is the momentum of either of the daughter particles in the rest frame, Γ0 is

the resonance width and q0 is the value of q when m = m0. Γ0 and m0 are obtained

from standard tables [9]. k denotes the spin of the resonance and

f0(q) = 1 (4.12)

f1(q) =
√
1/(1 + r2q2) (4.13)

f2(q) =
√
1/(r4q4 + 3r2q2 + 9) (4.14)

where r ≈ 4.0GeV/c is the “radius” of the interaction, first introduced by Blatt and

Weisskopf [65].

4.6.3 Flatté

The f0(980) needs to be modelled slightly differently to the other resonances, to

take into account the fact that it lies very close to the K+K− threshold. A coupled-

channel Breit Wigner or Flatté is used. The mass-dependent width formula is now

given by the sum of the widths in the ππ and KK systems [27],

Γ(m) = Γπ(m) + ΓK(m), (4.15)

where

Γπ(m) = gπ
√
m2 − 4m2

π (4.16)

ΓK(m) = gK
√
m2 − 4m2

K (4.17)

and mπ and mK are the invariant masses of the pion and kaon, and gπ and gK are

experimentally determined coupling constants. There are three main sets of results

for gπ and gK :
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¦ gπ = 0.138± 0.010 and gK/gπ = 4.45± 0.25 – BES Collaboration [28]

¦ gπ = 0.09± 0.01± 0.01 and gK = 0.02± 0.04± 0.03 – E791 Collaboration [29]

¦ gπ = 0.28 ± 0.04 and gK = 0.56 ± 0.18, with gK/gπ = 2.0 ± 0.9 – WA76

Collaboration [30]

The E791 measurement comes from an analysis of D±
s → π±π∓π±, with no direct

observation of f0(980) → K+K−. The WA76 analysis studies centrally produced

ππ and KK pairs from proton-proton and pion-proton collisions. Their f0(980)

measurements come from an observation in the ππ spectrum, but theirKK spectrum

results suffered from high background, resulting in no clear observation.

The BES result comes from a joint analysis of J/ψ → φπ+π− and J/ψ → φK+K−.

As this is the only result to directly use K+K− events in the measurement, the BES

results are considered to be superior, and as such this analysis uses the BES results

as inputs for the Flatté model.

4.6.4 Choice of Nonresonant Model

Traditionally nonresonant decay is modelled as a uniform distribution across the

allowed phase space, however this model did not fit the data. An attempt at fitting

two other theoretical models [66], [67] has been made on the BABAR dataset [64],

but neither could adequately describe the data.

In this analysis two ad hoc empirical models are tested. The first was proposed by the

BELLE collaboration and is used in their Dalitz analysis of B± → K±K∓K± [34].

It has the form:

Fj(x, y) = eαx + eαy, (4.18)
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where x = m2
13(K

+K−) and y = m2
23(K

+K−) are the invariant mass-squared pairs

of the two possible charge-zero combinations of the three kaons, and α is a constant

to be determined. This shall be referred to as the Exponential model.

A second empirical model:

Fj(x, y) = 1 + α
x+ y

m2
B

, (4.19)

was put forward by Dvoretskii [64]. Again x and y are the invariant mass-squared

pairs and α is a constant to be determined. This shall be referred to as the Taylor

(expansion) model.

Likelihood scanning (see Sections 4.7 and 5.2) was used to determine the optimal α

values of the two models. Both models gave comparable likelihoods for the best fit,

but the Taylor model showed less multiple solutions (see Section 5.3.1) and more

reasonable fit fractions (the Exponential model best fit gave a total fit fraction of

∼ 180%), so the Taylor model was used for the final results of this analysis.

4.7 Using a Likelihood Scan to Fix Fit

Components

The floating of any parameter which affects a component’s shape is computationally

very expensive in a Dalitz fit. This is because the integration of the lineshapes must

be recalculated for each iteration. Also Laura++ was not written with the floating

of such parameters in mind, and would have required a major rewrite. Therefore

a likelihood scanning technique is used to determine the nonresonant α parameter

and the mass and width of the (KK)00.

The likelihood scan consists of performing the fit a number of times, each time with

a different value of one of the parameters, for example, fitting over ten different
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masses in the range 1.4 to 1.6GeV/c2. The mass is then set to the best fit and the

width is varied. Finally the mass and width are fixed at the optimal values and

α is varied. As the three parameters are highly correlated it is necessary to work

through this cycle a number of times until the fit stabilises. To maximise statistical

accuracy the fits are performed on the combined dataset.

A plot of each parameter against the likelihood value is then produced and fitted.

The minimum of the fit is then used as the best value for the required parameter.

Errors on these parameters are calculated by finding the values of the parameter at

which the likelihood is ±0.5 units above the minimum.
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5
Analysis Results

5.1 Introduction

This chapter presents the results of the Dalitz fit and also the total rate measure-

ment. Details of the error analysis follow both sets of results.

Other topics that are covered include multiple solutions, goodness of fit tests and

various cross-checks of the signal model.
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5.2 Results of the Likelihood Scan

This section gives the results of using a likelihood scan to determine the (KK)00

mass and width, and the value of the α parameter that is used in the models that

describe the shape of the nonresonant component (Section 4.6.4 gives details of the

nonresonant models). The likelihood scan consists of performing the Dalitz fit a

number of times, each time with a different value of one of the parameters. A plot

of each parameter against the likelihood value is then produced and fitted. The

minimum of the fit is then used as the best value for the required parameter. For

full details of the procedure see Section 4.7.

The Dalitz fit was found to converge upon different solutions given different starting

conditions. These multiple solutions are discussed in more detail in Section 5.3.1.

To overcome the problem each Dalitz fit was performed 100 times with randomised

starting conditions each time, and the fit with the lowest likelihood was taken.

The best fit using the “Taylor” nonresonant model gives:

¦ The nonresonant α value to be −0.799+0.038
−0.034. See Figure 5.1.

¦ The scalar mass as (1.523+0.028
−0.020)GeV/c2. See Figure 5.2.

¦ The scalar width to be (175+32
−27)MeV/c2. See Figure 5.3.

Using the “Exponential” nonresonant model gave the following results:

¦ The nonresonant α value to be 0.152± 0.012.

¦ The scalar mass as (1.590+0.023
−0.022)GeV/c2.

¦ The scalar width to be (232+45
−39)MeV/c2.
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Figure 5.1: Likelihood scan of nonresonant α. The red line is a quartic fit

to the data.

Both models give comparable likelihoods for the best fit, but the Taylor model

shows less multiple solutions and more reasonable fit fractions (the best fit for the

Exponential model gives a total fit fraction of ∼ 180%), and therefore the Taylor

model results are used to fix the components for the final results of this analysis.

5.3 Dalitz Fit Results

The results of the Dalitz fit to the nominal signal model are shown in Table 5.1 and

figure 5.4 shows a comparison between the fit and the data. The fit results around

the main resonances show good agreement with the data.

The fit outputted a number of differing solutions, the best two of which could not

be chosen between leading to two χc0 solutions being quoted. Multiple solutions are

discussed in more depth in Section 5.3.1 with Tables 5.3 and 5.4 showing the full
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Figure 5.2: Likelihood scan of the scalar mass. The peak in the centre made

the distribution non-trivial to fit for, so Mathematica’s InterpolatingPolyno-

mial function was used to find the minima. The black line shows Mathematica’s

fit.
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Figure 5.3: Likelihood scan of the scalar width. The red line is a quartic fit

to the data.
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Figure 5.4: Mass pair projection plots for the B+ (left) and B− (right)

fits. The data are represented by the black points and the fit result by the

solid blue line. The solid red histogram shows the qq background model and

the solid green histogram shows the model for the BB background. The top

row shows the light pair projection. The middle row shows the heavy pair

projection and the bottom row gives a zoomed in view of the φ(1020) region

of the light pair plot. The unpopulated region around 1.8GeV/c in the light

pair plot corresponds to the D0 veto.

107



5.3. Dalitz Fit Results 108

details of all the leading fits.

B+ B−

Average Efficiency (%) 19.16± 0.10± 0.08 19.10± 0.10± 0.11

Nonresonant Fraction (%) 54.3± 9.5± 3.0 51.7± 9.0± 4.1

Nonresonant Phase 0.0 FIXED 0.0 FIXED

f0(980) Fraction (%) 23.3± 8.7± 3.8 26.5± 7.7± 3.8

f0(980) Phase 2.21± 0.41± 0.12 1.96± 0.23± 0.14

φ(1020) Fraction (%) 11.2± 1.4± 0.43 13.0± 1.7± 0.43

φ(1020) Phase −2.99± 0.46± 0.11 2.97± 0.25± 0.13

(KK)00 Fraction (%) 9.9± 3.0± 1.8 8.6± 2.5± 1.8

(KK)00 Phase −0.84± 0.19± 0.09 −1.38± 0.23± 0.20

φ(1680) Fraction (%) 0.74± 0.83± 2.1 2.4± 1.2± 0.34

φ(1680) Phase −0.27± 0.52± 1.0 −1.16± 0.30± 0.23

χc0 Fraction A (%) 3.1± 0.92± 0.55 3.4± 0.77± 0.14

χc0 Phase A −0.35± 0.33± 0.21 −0.56± 0.26± 0.04

χc0 Fraction B (%) 5.9± 1.2± 0.64 6.7± 1.3± 0.34

χc0 Phase B 0.58± 0.21± 0.21 0.65± 0.22± 0.06

χc0 Mean Fraction (%) 4.5± 1.2± 0.64 5.0± 1.3± 0.34

Table 5.1: Dalitz plot fit results. The first error is statistical and the second is

systematic. The mean of the two leading solutions is taken for all components

other than the χc0, where both solutions are given.

The statistical errors for the magnitudes and phases of each component are generated

by Minuit during the fit. However when the statistical errors on the fit fractions

are calculated, from the magnitudes and phases, it does not take into account the

correlations between the different components and so is not accurate. Instead the

statistical errors for the fit fractions in Table 5.1 are given by a toy Monte Carlo
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study.

500 sets of 1058 and 1014 events are generated using amplitude and phase results

from the B+ and B− fits. The Dalitz fit procedure is then applied to each set of toy

MC with the initial amplitude and phase parameters being fixed to the generated

values. This ensures that the fit will converge on the correct solution rather than

an incorrect local minimum elsewhere in the phase space.

The fit fraction distribution of the 500 experiments is then plotted for each compo-

nent and a Gaussian function is fitted to each distribution. The statistical error is

then given by the width of the Gaussian. This method has been used in previous

Dalitz plot analyses [32], [34] & [33].

Component Fit Fraction Asymmetry (%)

Nonresonant −2± 13± 5

f0(980) 6± 21± 11

φ(1020) 7.4± 8.0± 2.5

(KK)00 −7± 25± 14

φ(1680) 53± 26± 36

χc0 A 3.7± 7.6± 5.5

χc0 B 7± 22± 9

χc0 Overall 6± 17± 6

Table 5.2: Asymmetry results — the difference between the B+ and B−

datasets. The first error is statistical and the second is systematic.

All cross-checks detailed later in this chapter quote only the statistical errors gen-

erated by the fit as a significant amount of time and effort is required to produce

fully accurate statistical and systematic errors.

Fit fraction asymmetry results are presented in Table 5.2. The asymmetry of each
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component is consistent with zero.

5.3.1 Multiple Solutions

The fit is initialised using random magnitudes and phases as a starting point for the

minimisation. It was noticed that different final solutions are obtained dependent

upon the starting conditions, indicating the presence of several local minima in

addition to the absolute minimum. To ensure the discovery of the global minima

each fit was run 1000 times, each using a randomised set of initial parameters. The

results of this can be seen in Tables 5.3 and 5.4 which show the lowest likelihood

solutions for B+ and B− together with the closest few alternative solutions.

The best two solutions, in both the B+ and B− datasets, differ only in the fit for

the χc0 component. There are two distinct solutions which are given the arbitrary

names ‘A’ and ‘B’:

¦ A) χc0 has a fit fraction of ∼3% and a negative phase.

¦ B) χc0 has a fit fraction of ∼6% and a positive phase.

Over the two datasets neither solution is favoured, and so for the calculation of

branching fractions the mean of the two solutions is taken. Mean phases are quoted

in the final result except in the case of the χc0 where both phases are quoted.

The further solutions are often seen in pairs, where for instance the (KK)00 can

be seen with a fit fraction of around 9% or over 50%, giving rise to an overall

fit fraction way above 100%. Different permutations of these pairs of results can

lead to a spectrum of multiple solutions. However the vast majority of fits lead

to either of the two lowest likelihood solutions. This and the strangeness of the
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B+ Fit 1 (B) B+ Fit 2 (A) B+ Fit 3

− lnL 5193.8 5195.2 5200.6

# Fits 300/1000 186/1000 99/1000

Nonresonant Fraction (%) 56.63± 3.52 51.89± 5.58 62.11± 9.98

Nonresonant Phase 0.0 FIXED 0.0 FIXED 0.0 FIXED

f0(980) Fraction (%) 25.04± 4.88 21.64± 7.92 30.75± 8.04

f0(980) Phase 2.14± 0.23 2.28± 0.41 2.34± 0.24

φ(1020) Fraction (%) 11.08± 2.07 11.38± 2.76 11.04± 2.70

φ(1020) Phase −3.02± 0.25 −2.96± 0.46 −2.82± 0.32

(KK)00 Fraction (%) 10.73± 2.22 9.09± 2.19 77.22± 14.62

(KK)00 Phase −0.84± 0.19 −0.83± 0.26 0.65± 0.14

φ(1680) Fraction (%) 0.78± 0.66 0.69± 0.62 0.03± 0.19

φ(1680) Phase −0.25± 0.52 −0.29± 0.50 −0.02± 3.49

χc0 Fraction (%) 5.87± 1.37 3.11± 1.21 2.62± 1.22

χc0 Phase 0.58± 0.21 −0.35± 0.33 −0.75± 0.31

Total Fraction (%) 110.1 97.8 183.8

Efficiency (%) 19.17± 0.10 19.15± 0.10 19.14± 0.10

Dalitz Plot χ2/ndof 62.0/53 67.1/54 68.7/53

Dalitz Plot p-value 0.19 0.11 0.07

mK+K−(light) projection χ
2/ndof 33.0/34 32.3/34 34.4/35

mK+K−(light) projection p-value 0.52 0.55 0.50

mK+K−(heavy) projection χ
2/ndof 53.4/41 54.4/41 54.9/40

mK+K−(heavy) projection p-value 0.09 0.08 0.06

Table 5.3: Multiple solutions from the B+ fit. (Errors on the fit fractions

are from the Minuit fit.) The p-value is the probability of obtaining a result

at least as extreme as that obtained given the χ2 and the number of degrees

of freedom.
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B− Fit 1 (A) B− Fit 2 (B) B− Fit 3 B− Fit 4

− lnL 4910.7 4913.0 4914.3 4914.3

# Fits 311/1000 171/1000 21/1000 54/1000

Nonresonant Fraction (%) 52.52± 3.69 50.96± 3.35 86.78± 9.17 52.76± 9.12

Nonresonant Phase 0.0 FIXED 0.0 FIXED 0.0 FIXED 0.0 FIXED

f0(980) Fraction (%) 28.92± 4.95 24.01± 4.80 15.24± 4.92 24.19± 7.31

f0(980) Phase 1.88± 0.19 2.03± 0.23 0.12± 0.22 2.49± 0.29

φ(1020) Fraction (%) 12.95± 2.48 13.08± 2.52 12.45± 2.38 13.10± 3.28

φ(1020) Phase 2.88± 0.23 3.06± 0.25 −0.03± 0.29 −2.60± 0.33

(KK)00 Fraction (%) 8.87± 1.88 8.41± 1.85 54.02± 7.04 76.17± 15.29

(KK)00 Phase −1.48± 0.23 −1.28± 0.23 1.54± 0.13 0.81± 0.16

φ(1680) Fraction (%) 2.28± 0.99 2.49± 1.05 1.11± 0.81 1.40± 1.12

φ(1680) Phase −1.19± 0.30 −1.12± 0.29 2.93± 0.53 1.63± 0.51

χc0 Fraction (%) 3.35± 1.06 6.72± 1.67 2.87± 0.92 6.25± 1.81

χc0 Phase −0.56± 0.26 0.65± 0.22 −1.00± 0.51 0.53± 0.20

Total Fraction (%) 108.9 105.7 172.5 173.9

Efficiency (%) 19.10± 0.10 19.10± 0.10 19.09± 0.10 19.09± 0.10

Dalitz Plot χ2/ndof 59.2/55 57.2/55 63.4/50 60.1/55

Dalitz Plot p-value 0.32 0.39 0.10 0.30

mK+K−(light) projection χ
2/ndof 48.7/34 49.8/34 52.6/33 50.0/34

mK+K−(light) projection p-value 0.05 0.04 0.02 0.04

mK+K−(heavy) projection χ
2/ndof 49.7/39 49.2/39 49.7/39 56.0/39

mK+K−(heavy) projection p-value 0.12 0.13 0.12 0.04

Table 5.4: Multiple solutions from the B− fit. (Errors on the fit fractions

are from the Minuit fit.) The p-value is the probability of obtaining a result

at least as extreme as that obtained given the χ2 and the number of degrees

of freedom.
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total fit fractions obtained from the less likely solutions suggest that results other

than A and B can be safely ignored. It is worth noting that a previous analysis by

the BELLE collaboration [34] also sees a multiple solution problem giving rise to

solutions with large overall fit fractions. These solutions arise due to either large

positive or negative interference between the nonresonant component, the (KK)00

and to a lesser extent the f0(980).

The same multiple solutions are also seen in Monte Carlo tests, See Section 5.4.

5.3.2 Precision of the fit

To give an indication of the goodness of the fit and as an additional method for

distinguishing between solutions (the other being likelihood values) χ2 values are

calculated. χ2 is given by:

χ2 =
NBins∑

i=1

[yi − f(xi)]2
f(xi)

, (5.1)

where yi is the number of data events found in bin i and f(xi) is the number of

events in that bin as predicted by the fit results. The associated number of degrees

of freedom (ndof) is calculated as NBins − k − 1, where k is the number of free

parameters in the Dalitz-plot fit. A minimum of 10 entries in each bin is required;

if this requirement is not met then neighbouring bins are combined. The binning of

the Dalitz plot for this test can be seen in Figure 5.5.

The results in Tables 5.3 and 5.4 show the χ2 values to be broadly in-line with

the -ln(Likelihood) results. For this reason and due to problems such as obtaining

an optimal binning structure for the χ2 test priority is given to the -ln(Likelihood)

numbers when deciding between results.
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Figure 5.5: This Figure attempts to illustrate the goodness of the fit across

the Dalitz plot. The top row shows the distribution of the data for the two

datasets. B+ is shown in the left column and B− in the right column. The

centre row shows the toy MC generated from the fit. The bottom row shows the

χ2 distribution across the Dalitz plot, resulting from the differences between

the top two rows.
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5.4. Cross-checks 115

5.4 Cross-checks

The nominal model detailed in earlier sections was deemed the best model after

various cross-checks against alternative models had been performed. Various Monte

Carlo tests of the nominal model are also detailed in this section.

5.4.1 Removal of components from the signal model

To test the stability of the various components and also to show that the fit is better

with each of them included a series of “omission tests” were carried out. This entails

removing a single component from the fit and then fitting the data. When removing

the nonresonant component the φ(1020) is instead set to be fixed. The results of

this test on the B+ and B− datasets are show in Tables 5.5 and 5.6.

The φ(1020), φ(1680) and (KK)00 give very stable results. The χc0 is stable within

the A and B multiple solutions. The f0(980) is unstable on removal of the nonreso-

nant or φ(1020) component. This is understandable though as all three peak toward

the edge of the Dalitz plot. The nonresonant component is the least stable, but is

also the only component that fully overlaps every other component in the fit.

5.4.2 Inclusion of additional components in the signal model

To test whether any extra resonances contribute to the Dalitz plot some additional

resonances are considered. Each extra resonance is added in turn to the nominal

signal model and a fit to both B+ and B− datasets is made. The results of these

“addition tests” are shown in Tables 5.7 and 5.8.

None of the higher f mesons are seen to contribute to the plot. The f0(1370) and
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5.4.
C
ross-ch

eck
s

1
1
6

Nominal No Nonresonant No χc0 No φ(1020) No f0(980) No (KK)00 No φ(1680)

− lnL + lnL(Nominal) 0 135.5 25.5 77.3 15.5 31.5 2.5

Nonresonant Fraction (%) 54.25± 5.70 — 69.79± 4.77 70.20± 7.75 80.86± 2.79 33.09± 6.40 52.49± 5.28

Nonresonant Magnitude 1.00 FIXED — 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Nonresonant Phase 0.00 FIXED — 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 4.49± 1.37 5.78± 1.46 — 4.37± 1.61 4.64± 1.08 4.46± 1.67 4.53± 1.37

χc0 Magnitude 0.28± 0.05 0.36± 0.04 — 0.25± 0.04 0.24± 0.03 0.37± 0.06 0.29± 0.05

χc0 Phase +0.12± 0.33 +1.26± 0.29 — −0.13± 0.58 +0.45± 0.67 +0.24± 0.36 +0.14± 0.32

φ(1020) Fraction (%) 11.23± 2.82 9.86± 1.29 11.38± 2.12 — 13.48± 1.58 10.70± 2.61 11.46± 2.49

φ(1020) Magnitude 0.46± 0.06 0.46 FIXED 0.40± 0.04 — 0.41± 0.03 0.57± 0.05 0.47± 0.05

φ(1020) Phase −2.99± 0.47 −2.99 FIXED +3.13± 0.25 — −1.75± 0.14 −2.36± 0.33 −2.94± 0.39

f0(980) Fraction (%) 23.34± 8.09 49.85± 5.08 28.89± 5.63 64.75± 8.90 — 18.33± 5.05 21.52± 6.73

f0(980) Magnitude 0.66± 0.15 1.04± 0.09 0.64± 0.07 0.96± 0.06 — 0.75± 0.14 0.64± 0.14

f0(980) Phase +2.21± 0.42 +1.32± 0.16 +1.99± 0.20 +1.62± 0.15 — −3.02± 0.41 +2.29± 0.38

(KK)00 Fraction (%) 9.91± 2.21 13.93± 2.78 11.34± 2.39 11.53± 2.72 13.78± 2.24 — 9.35± 2.06

(KK)00 Magnitude 0.43± 0.05 0.55± 0.06 0.40± 0.04 0.41± 0.05 0.42± 0.03 — 0.42± 0.05

(KK)00 Phase −0.84± 0.27 +1.61± 0.20 −0.83± 0.18 −1.36± 0.22 −0.19± 0.13 — −0.86± 0.23

φ(1680) Fraction (%) 0.74± 0.66 0.50± 0.57 0.67± 0.62 1.82± 1.06 0.60± 0.57 0.66± 0.59 —

φ(1680) Magnitude 0.12± 0.05 0.11± 0.06 0.10± 0.05 0.16± 0.05 0.09± 0.04 0.14± 0.06 —

φ(1680) Phase −0.27± 0.52 0.55± 0.61 −0.30± 0.56 −1.16± 0.36 −0.04± 0.64 −0.76± 0.46 —

Table 5.5: Omission test results for the B+ fit. The mean of the A and B

solutions is given in each case, except where the χc0 is omitted. (All errors are

statistical only and come from the Minuit fit)
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5.4.
C
ross-ch

eck
s

1
1
7

Nominal No Nonresonant No χc0 No φ(1020) No f0(980) No (KK)00 No φ(1680)

− lnL + lnL(Nominal) 0 103.4 36.2 98.9 24.0 30.7 10.9

Nonresonant Fraction (%) 51.75± 3.69 — 64.79± 4.51 71.49± 9.26 70.75± 2.27 34.89± 4.12 46.28± 3.50

Nonresonant Magnitude 1.00 FIXED — 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Nonresonant Phase 0.00 FIXED — 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 5.04± 1.67 5.54± 1.38 — 4.89± 1.82 5.18± 1.26 5.06± 1.63 5.01± 1.71

χc0 Magnitude 0.31± 0.05 0.36± 0.04 — 0.26± 0.04 0.27± 0.03 0.38± 0.05 0.33± 0.05

χc0 Phase +0.05± 0.27 +0.52± 0.30 — −0.22± 0.27 +0.48± 0.30 +0.11± 0.29 +0.03± 0.27

φ(1020) Fraction (%) 13.02± 2.52 11.49± 1.35 13.05± 2.34 — 15.80± 1.75 12.38± 2.35 13.83± 2.58

φ(1020) Magnitude 0.51± 0.05 0.51 FIXED 0.45± 0.04 — 0.48± 0.03 0.60± 0.05 0.55± 0.05

φ(1020) Phase +2.97± 0.25 +2.97 FIXED +2.85± 0.22 — −2.01± 0.14 −2.88± 0.26 +3.00± 0.24

f0(980) Fraction (%) 26.47± 4.96 43.79± 4.74 31.47± 5.22 72.61± 10.56 — 23.23± 4.12 24.53± 5.06

f0(980) Magnitude 0.72± 0.08 1.00± 0.08 0.70± 0.06 1.01± 0.06 — 0.82± 0.11 0.73± 0.10

f0(980) Phase +1.96± 0.23 −0.965± 0.17 +1.80± 0.17 +1.36± 0.12 — +2.74± 0.28 +2.07± 0.25

(KK)00 Fraction (%) 8.64± 1.88 17.48± 3.09 8.68± 1.87 10.13± 2.45 11.29± 1.92 — 8.57± 1.88

(KK)00 Magnitude 0.41± 0.05 0.63± 0.06 0.37± 0.04 0.38± 0.05 0.40± 0.04 — 0.43± 0.05

(KK)00 Phase −1.38± 0.23 +1.16± 0.20 −1.40± 0.22 −2.09± 0.27 −0.53± 0.15 — −1.47± 0.26

φ(1680) Fraction (%) 2.39± 1.05 1.75± 1.04 2.26± 0.97 4.54± 1.63 2.22± 1.07 2.68± 1.13 —

φ(1680) Magnitude 0.22± 0.05 0.20± 0.05 0.19± 0.04 0.26± 0.04 0.18± 0.04 0.28± 0.06 —

φ(1680) Phase −1.16± 0.30 −0.48± 0.40 −1.22± 0.30 −1.86± 0.23 −0.59± 0.32 −1.23± 0.28 —

Table 5.6: Omission test results for the B− fit. The mean of the A and B

solutions is given in each case, except where the χc0 is omitted. (All errors are

statistical only and come from the Minuit fit)
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φ(1850) were also considered for this test, but the f0(1370)’s mass and width were

deemed to be too unknown (1.2-1.5GeV and 200-500MeV) to reliably test for, and

also it isn’t expected to be present in the fit (see Section 4.6.1). The φ(1850) falls

exactly in the middle of the D0 veto.

5.4.3 Toy Monte Carlo fit-bias study

To search for any biases in the fitting procedure large samples of toy MC were

generated and fitted using Laura++. The fit results with the best likelihood were

used to generate 500 sets of 1058 events for the B+ model and 500 sets of 1014

events for B−, including the appropriate numbers of background events. The initial

parameters for the fits were set to be the generated values and a fit to each sample

is performed. This ensured that the correct minimum is found, so avoiding the

problems with multiple solutions.

The “pull” on a component is the difference between the generated value and the

fitted value divided by the statistical error of the fit. If the fit shows no bias the pull

distribution for a component should be a Gaussian of width 1σ which is centred on

zero. If the width is less than 1σ it shows that the statistical error is too large, and

similarly a large width shows that the error is underestimated. The pull distributions

for the fit fractions show such non-unity widths for the reasons discussed in Section

5.3. The magnitude and phase pull distributions can be seen in Figures 5.6 and 5.7.

The numbers for the pull means and widths are shown in Table 5.9.

Most fit components show a pull of between 0.1 and 0.25σ indicating multiple small

biases. The root cause of the bias is unknown and the observation of problems

for all components is unique to the K±K∓K± Dalitz plot. Previous studies using

Laura++ indicated only small levels of bias effecting only the smaller components in

the fits [32], [33].
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Nominal Add f2(1270) Add f ′2(1525) Add f0(1710)

− lnL + lnL(Nominal) 0 -0.2 -1.1 -5.0

Nonresonant Fraction (%) 54.25± 5.70 52.98± 5.43 53.39± 5.63 53.76± 5.31

Nonresonant Magnitude 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Nonresonant Phase 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 4.49± 1.37 4.52± 1.40 4.54± 1.39 4.54± 1.47

χc0 Magnitude 0.28± 0.05 0.29± 0.05 0.29± 0.05 0.29± 0.05

χc0 Phase +0.12± 0.33 +0.12± 0.33 +0.14± 0.33 +0.09± 0.36

φ(1020) Fraction (%) 11.23± 2.82 11.29± 2.65 11.34± 2.64 11.17± 2.64

φ(1020) Magnitude 0.46± 0.06 0.47± 0.05 0.47± 0.05 0.46± 0.05

φ(1020) Phase −2.99± 0.47 −2.94± 0.44 −2.93± 0.44 −3.00± 0.36

f0(980) Fraction (%) 23.34± 8.09 22.24± 7.14 22.14± 7.32 24.53± 6.32

f0(980) Magnitude 0.66± 0.15 0.65± 0.14 0.64± 0.15 0.68± 0.12

f0(980) Phase +2.21± 0.42 +2.26± 0.41 +2.27± 0.41 +2.30± 0.34

(KK)00 Fraction (%) 9.91± 2.21 9.72± 2.22 9.70± 2.34 8.34± 2.89

(KK)00 Magnitude 0.43± 0.05 0.43± 0.05 0.43± 0.05 0.39± 0.07

(KK)00 Phase −0.84± 0.27 −0.83± 0.25 −0.78± 0.26 −0.83± 0.31

φ(1680) Fraction (%) 0.74± 0.66 0.75± 0.68 0.82± 0.72 2.80± 1.38

φ(1680) Magnitude 0.12± 0.05 0.12± 0.05 0.13± 0.05 0.23± 0.06

φ(1680) Phase −0.27± 0.52 −0.23± 0.54 −0.16± 0.55 +0.77± 0.32

Additional Fraction (%) — 0.05± 0.28 0.13± 0.27 4.81± 2.80

Additional Magnitude — 0.03± 0.07 0.05± 0.05 0.30± 0.08

Additional Phase — −0.42± 3.71 +0.95± 0.99 +1.31± 0.28

Table 5.7: Addition test results for the B+ fit. The mean of the A and B

solutions is given for each component. (All errors are statistical only and come

from the Minuit fit)
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Nominal Add f2(1270) Add f ′2(1525) Add f0(1710)

− lnL + lnL(Nominal) 0 -2.7 -4.9 -1.5

Nonresonant Fraction (%) 51.75± 3.69 55.03± 4.10 48.82± 3.35 49.17± 5.17

Nonresonant Magnitude 1.00 FIXED 1.00 FIXED 1.00 FIXED 1.00 FIXED

Nonresonant Phase 0.00 FIXED 0.00 FIXED 0.00 FIXED 0.00 FIXED

χc0 Fraction (%) 5.04± 1.67 5.03± 1.67 5.04± 1.71 5.08± 1.86

χc0 Magnitude 0.31± 0.05 0.30± 0.04 0.32± 0.05 0.32± 0.05

χc0 Phase +0.05± 0.27 +0.05± 0.27 +0.06± 0.27 +0.04± 0.27

φ(1020) Fraction (%) 13.02± 2.52 12.90± 2.53 13.18± 2.56 13.03± 2.91

φ(1020) Magnitude 0.51± 0.05 0.49± 0.05 0.52± 0.05 0.52± 0.06

φ(1020) Phase +2.97± 0.25 +2.91± 0.25 +3.12± 0.27 +3.04± 0.24

f0(980) Fraction (%) 26.47± 4.96 27.57± 5.08 23.34± 4.85 25.23± 5.35

f0(980) Magnitude 0.72± 0.08 0.71± 0.08 0.69± 0.09 0.72± 0.08

f0(980) Phase +1.96± 0.23 +1.90± 0.23 +2.07± 0.27 +2.08± 0.24

(KK)00 Fraction (%) 8.64± 1.88 9.03± 1.92 8.75± 1.91 7.08± 2.63

(KK)00 Magnitude 0.41± 0.05 0.41± 0.05 0.42± 0.05 0.38± 0.08

(KK)00 Phase −1.38± 0.23 −1.37± 0.22 −1.23± 0.24 −1.56± 0.30

φ(1680) Fraction (%) 2.39± 1.05 2.32± 1.02 2.21± 1.04 2.45± 1.16

φ(1680) Magnitude 0.22± 0.05 0.21± 0.05 0.22± 0.05 0.22± 0.05

φ(1680) Phase −1.16± 0.30 −1.19± 0.30 −0.93± 0.33 −1.12± 0.33

Additional Fraction (%) — 0.34± 0.34 1.43± 1.01 1.10± 1.41

Additional Magnitude — 0.08± 0.04 0.17± 0.06 0.15± 0.09

Additional Phase — −2.93± 1.18 −0.52± 0.29 +0.98± 0.53

Table 5.8: Addition test results for the B− fit. The mean of the A and B

solutions is given for each component. (All errors are statistical only and come

from the Minuit fit)
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B+ B−

Pull Mean Pull Sigma Pull Mean Pull Sigma

f0(980) Magnitude 0.249± 0.053 1.069± 0.046 0.235± 0.047 0.926± 0.039

f0(980) Phase −0.263± 0.059 1.134± 0.052 −0.299± 0.045 1.014± 0.032

φ(1020) Magnitude −0.155± 0.050 1.007± 0.040 −0.147± 0.052 1.007± 0.045

φ(1020) Phase −0.293± 0.047 1.061± 0.034 −0.178± 0.045 1.002± 0.031

(KK)00 Magnitude 0.119± 0.044 0.974± 0.031 0.167± 0.043 0.956± 0.030

(KK)00 Phase −0.005± 0.051 1.015± 0.047 −0.022± 0.044 0.974± 0.031

φ(1680) Magnitude 0.262± 0.040 0.879± 0.028 0.091± 0.045 0.996± 0.032

φ(1680) Phase −0.098± 0.051 1.034± 0.048 −0.110± 0.046 1.030± 0.030

χc0 Magnitude −0.225± 0.050 0.996± 0.049 0.043± 0.046 1.016± 0.032

χc0 Phase −0.096± 0.047 1.051± 0.033 −0.023± 0.046 1.010± 0.030

Table 5.9: Magnitude and Phase pulls from toy MC generated from the best

fit.

Many tests were carried out, attempting to understand the problem. They included:

¦ Using 10,000 experiments rather than 500.

¦ Setting different components to be the fixed component.

¦ Using more basic signal models, starting with only 2 components.

¦ Cutting lineshapes at 5σ (normally there is no cut).

¦ Generating the integration from toy MC rather than a numerical method.

¦ Using normal Dalitz plot background histograms rather than square ones.

¦ Setting the f0(980) mass to 1.1GeV/c2, so that the Flatté peaks within the

Dalitz plot.

¦ Trying each of the different nonresonant models (Taylor, Exponential and flat).
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Each test requires the generation of roughly half a million toy MC events, meaning

that only two tests could be done per day. After doing the above tests for a few

weeks and getting no closer to pin-pointing the cause of the problem it was decided

to be impractical to solve in within a reasonable time scale.

Instead the biases are taken into account via an extra systematic error on each

component. This error is taken to be the difference between the data fitted value

and the mean of the toy distribution. Extra toy MC was generated and fitted to get

results for the second best fits on the B+ and B− datasets. Toy distribution means

are shown in Tables 5.10-5.12.

5.4.4 Full Monte Carlo tests

Migration studies showed that the experimental resolution should only have a small

effect upon the position of events in the Dalitz plot. To check that the fit returns

correct results despite neglecting this effect samples of fully simulated MC were

tested. As the process for getting specific sets of MC generated at BABAR involves

a long waiting period it was decided to instead reweight a sample of 1.314 million

B± → K±K∓K± nonresonant MC events. Laura++ was used to generate an am-

plitude model and then select events based upon the position at which they were

generated (taken from MC truth information). Toy MC generated from the qq and

BB background models was then added in appropriate fractions.

Seven samples were generated according to the best handful of results for both B+

and B− datasets (see Section 5.3.1). Each sample contained only ∼500 events due

to difficulties encountered finding enough events to make up the φ(1020).

The results of these tests can be seen in Tables 5.13-5.19. All samples show both

results for the χc0 indicating that the model cannot distinguish between the two.
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Figure 5.6: B+ pull plots. The left-hand column shows magnitude pulls and the right
is phase pulls. Top row is f0(980), second is φ(1020), middle is (KK)00, second bottom is
φ(1680) and the bottom row shows χc0.
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Figure 5.7: B− pull plots. The left-hand column shows magnitude pulls and the right
is phase pulls. Top row is f0(980), second is φ(1020), middle is (KK)00, second bottom is
φ(1680) and the bottom row shows χc0.
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B+ Best Fit B+ 2nd Best Fit

Mean Width Mean Width

Nonresonant Fit Fraction (%) 58.09± 0.49 9.54± 0.44 53.70± 0.42 8.22± 0.40

f0(980) Fit Fraction (%) 27.93± 0.41 8.07± 0.41 24.39± 0.45 8.64± 0.44

φ(1020) Fit Fraction (%) 10.773± 0.074 1.437± 0.068 11.183± 0.072 1.401± 0.070

(KK)00 Fit Fraction (%) 11.48± 0.15 3.01± 0.13 9.93± 0.15 2.85± 0.13

φ(1680) Fit Fraction (%) 0.924± 0.040 0.679± 0.053 0.687± 0.082 0.827± 0.081

χc0 Fit Fraction (%) 5.532± 0.065 1.235± 0.062 3.116± 0.052 0.923± 0.053

Table 5.10: B+ Fit Fraction distribution means and widths from toy MC

samples using the nominal fit results.

B− Best Fit B− 2nd Best Fit

Mean Width Mean Width

Nonresonant Fit Fraction (%) 52.25± 0.47 8.61± 0.51 52.26± 0.46 9.04± 0.45

f0(980) Fit Fraction (%) 30.01± 0.40 7.38± 0.37 26.78± 0.40 7.65± 0.41

φ(1020) Fit Fraction (%) 12.757± 0.093 1.691± 0.086 13.025± 0.068 1.349± 0.068

(KK)00 Fit Fraction (%) 8.87± 0.12 2.15± 0.12 9.71± 0.14 2.48± 0.14

φ(1680) Fit Fraction (%) 2.557± 0.062 1.160± 0.053 2.784± 0.062 1.171± 0.057

χc0 Fit Fraction (%) 3.372± 0.039 0.765± 0.039 6.406± 0.064 1.262± 0.065

Table 5.11: B− Fit Fraction distribution means and widths from toy MC

samples using the nominal fit results.

B+ Best Fit B+ 2nd Best Fit B− Best Fit B− 2nd Best Fit

f0(980) Phase 2.104± 0.012 2.222± 0.013 1.863± 0.010 1.974± 0.010

φ(1020) Phase −3.074± 0.014 −3.012± 0.016 2.851± 0.011 2.992± 0.012

(KK)00 Phase −0.851± 0.010 −0.833± 0.010 −1.498± 0.010 −1.285± 0.010

φ(1680) Phase −0.268± 0.027 −0.312± 0.015 −1.223± 0.014 −1.169± 0.013

χc0 Phase 0.551± 0.012 −0.349± 0.018 −0.532± 0.015 0.624± 0.009

Table 5.12: Phase distribution means from toy MC samples using the nom-

inal fit results.
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Otherwise most components are fitted quite well considering the low statistics. Per-

haps most reassuring is that the leading solutions (Tables 5.13 and 5.16) are the

most stable. The f0(980) phase is the most commonly poorly fitted component.

However, because systematic uncertainties are not calculated for these tests the ef-

fect looks worse than it really is. One other point to note is that the phases wrap

around at ±π, thus explaining some of the φ(1020) phase results.

5.5 Systematic Uncertainty

To calculate the systematic uncertainty on each component of the Dalitz fit seven

factors are studied:

¦ the BB background fraction.

¦ the BB background distribution histogram.

¦ the qq background fraction.

¦ the qq background distribution histogram.

¦ the efficiency histogram.

¦ the fit bias.

¦ the model dependency.

This section details the studies made of each factor. The results table (Table 5.1)

shows the full systematic uncertainty for each component, which is generated by

summing in quadrature the uncertainties for the seven factors listed above.
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NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.32 0.60 0.45 -3.04 0.66 2.13 0.45 -0.82 0.13 -0.13 —

3015.3 0.20±0.05 -1.17±0.42 0.45±0.06 1.94±0.40 0.60±0.09 1.26±0.18 0.43±0.08 -0.32±0.30 0.16±0.07 -0.38±0.50 17/200
3016.4 0.31±0.05 0.96±0.31 0.46±0.06 2.07±0.45 0.57±0.09 1.34±0.21 0.44±0.10 -0.17±0.34 0.16±0.07 -0.34±0.50 174/200

Table 5.13: Magnitude and Phase results for the reweighted Monte Carlo test based on the best Likelihood fit for the B+

sample. The experiment used 384 signal events, 18 BB and 133 qq events.

NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.24 -0.95 0.47 -3.02 0.65 2.25 0.44 -0.82 0.13 -0.17 —

2992.4 0.23±0.05 -0.95±0.40 0.43±0.06 2.11±0.40 0.71±0.09 1.36±0.20 0.43±0.10 -0.31±0.34 0.11±0.07 -0.65±0.64 39/200
2994.0 0.33±0.06 0.41±0.50 0.46±0.07 2.38±0.47 0.70±0.10 1.58±0.25 0.57±0.15 0.11±0.33 0.11±0.07 -0.67±0.56 134/200
2998.3 0.29±0.05 0.84±0.36 0.39±0.06 0.60±0.65 0.55±0.10 0.55±0.35 0.44±0.08 0.91±0.39 0.12±0.07 -1.13±0.56 16/200

Table 5.14: Magnitude and phase results for the reweighted Monte Carlo test based on the second best Likelihood fit to

the B+ sample. The experiment used 377 signal events, 18 BB and 131 qq events.

NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.29 0.46 0.40 -2.93 0.73 2.22 1.07 0.56 0.10 0.43 —

3303.8 0.20±0.04 -1.15±0.41 0.40±0.05 2.29±0.38 0.68±0.08 1.44±0.17 0.55±0.09 -0.21±0.26 0.11±0.06 -0.28±0.61 97/200
3304.6 0.31±0.05 0.70±0.28 0.42±0.05 2.53±0.44 0.65±0.09 1.62±0.21 0.68±0.11 0.18±0.20 0.10±0.07 -0.18±0.70 93/200
3308.4 0.28±0.04 1.05±0.26 0.35±0.05 0.33±0.47 0.52±0.08 0.49±0.23 0.54±0.07 0.94±0.24 0.08±0.06 -1.10±0.74 7/200

Table 5.15: Magnitude and phase results for the reweighted Monte Carlo test based on the third best Likelihood fit to the

B+ sample. The experiment used 414 signal events, 20 BB and 143 qq events.
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NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.25 -0.52 0.48 2.85 0.72 1.85 0.41 -1.49 0.21 -1.14 —

2736.9 0.27±0.06 -1.12±0.33 0.49±0.07 2.10±0.45 0.65±0.10 1.23±0.20 0.40±0.08 -0.84±0.37 0.18±0.09 -1.00±0.51 79/200
2738.6 0.39±0.07 0.45±0.30 0.52±0.08 2.49±0.53 0.68±0.12 1.61±0.27 0.79±0.14 0.44±0.22 0.02±0.12 0.16±4.87 66/200
2740.2 0.37±0.06 0.63±0.36 0.49±0.07 2.23±0.52 0.61±0.10 1.31±0.26 0.44±0.10 -0.51±0.35 0.20±0.09 -0.91±0.53 52/200

Table 5.16: Results from the reweighted Monte Carlo fit to the best Likelihood fit to the B− sample. The experiment used 352 signal

events, 15 BB and 111 qq events.

NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.36 0.70 0.49 3.01 0.67 1.98 0.40 -1.28 0.22 -1.07 —

2647.4 0.38±0.11 -0.99±0.33 0.70±0.15 3.03±0.62 0.66±0.18 1.72±0.41 0.37±0.11 -1.17±0.57 0.17±0.11 -1.68±0.68 82/200
2647.7 0.52±0.13 0.88±0.32 0.72±0.17 -2.91±0.80 0.55±0.23 1.95±0.65 0.38±0.12 -0.91±0.54 0.18±0.11 -1.64±0.67 74/200
2647.8 0.39±0.06 1.08±0.31 0.54±0.08 1.63±0.50 0.56±0.10 0.95±0.29 0.37±0.09 -0.97±0.42 0.26±0.08 -1.17±0.40 15/200
2649.7 0.35±0.09 -1.30±0.38 0.64±0.13 3.04±0.62 0.75±0.17 1.91±0.35 0.94±0.19 0.49±0.24 0.11±0.12 2.84±1.23 6/200
2650.0 0.50±0.12 0.57±0.34 0.69±0.15 -2.85±0.72 0.67±0.21 2.15±0.51 0.96±0.23 0.60±0.32 0.15±0.14 2.98±1.08 6/200

Table 5.17: Results from the reweighted Monte Carlo fit to the second best Likelihood fit to the B− sample. The experiment used 343

signal events, 14 BB and 108 qq events.

NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.19 -1.19 0.38 -0.08 0.40 0.08 0.81 1.58 0.11 2.98 —

2746.6 0.41±0.07 0.94±0.31 0.55±0.09 0.25±0.42 0.54±0.12 0.54±0.27 0.62±0.11 1.55±0.40 0.15±0.12 -2.21±0.57 82/200
2746.7 0.27±0.06 -1.50±0.41 0.51±0.08 0.28±0.42 0.55±0.11 0.60±0.24 0.60±0.10 -1.31±0.36 0.11±0.13 -2.35±0.69 19/200
2747.9 0.43±0.07 1.27±0.29 0.58±0.09 1.17±0.46 0.70±0.10 0.89±0.27 0.33±0.12 -2.24±0.90 0.31±0.08 -1.17±0.39 66/200
2748.2 0.28±0.06 -1.46±0.38 0.54±0.08 1.42±0.43 0.71±0.10 0.98±0.23 0.32±0.09 -1.62±0.71 0.31±0.08 -1.01±0.36 39/200
2751.7 0.26±0.06 -1.25±0.37 0.54±0.10 -2.46±0.62 0.40±0.17 0.72±0.34 0.35±0.09 -0.49±0.41 0.20±0.07 -0.44±0.48 6/200
2752.4 0.39±0.10 1.56±0.33 0.53±0.15 -0.75±0.87 0.44±0.24 0.05±0.55 0.29±0.12 -0.18±0.61 0.22±0.08 -0.51±0.46 6/200

Table 5.18: Results from the reweighted Monte Carlo fit to the third best Likelihood fit to the B− sample. The experiment used 358

signal events, 15 BB and 112 qq events.

NLL χc0Mag χc0Pha φ(1020)M φ(1020)Pha f0(980)M f0(980)Pha (KK)00M (KK)00Pha φ(1680)M φ(1680)Pha #Fits
Generated: 0.35 0.63 0.48 -2.61 0.65 2.45 1.17 0.80 0.16 1.53 —

2802.4 0.44±0.08 -0.71±0.27 0.61±0.09 -2.78±0.51 0.57±0.16 1.99±0.34 0.85±0.15 0.48±0.23 0.08±0.09 2.15±1.80 117/200
2803.4 0.30±0.07 -1.17±0.34 0.59±0.09 3.07±0.44 0.60±0.13 1.61±0.26 0.48±0.10 -0.53±0.36 0.12±0.10 -1.14±0.80 78/200

Table 5.19: Results from the reweighted Monte Carlo fit to the forth best Likelihood fit to the B− sample. The experiment used 363

signal events, 15 BB and 114 qq events.
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5.5. Systematic Uncertainty 129

5.5.1 Efficiency and Background Histograms

The fit model uses three histograms to describe the qq background, BB background

and efficiency distributions across the Dalitz plot. To calculate systematic uncer-

tainties for the use of these histograms multiple similar histograms are generated

and their effect upon the fit results is studied.

Every bin of each histogram has an associated error. For each histogram 100 new

histograms are produced by varying its bin contents randomly within the error

bounds. The systematic uncertainty on a fit component due to the uncertainty

from each histogram is given by the root-mean-square (RMS) of its distribution in

the results of fits to the 100 new histograms. Table 5.20 shows the results of this

procedure.

5.5.2 Background Fractions

The fit model also uses two numbers setting out the expected fractions of the qq

and BB backgrounds. To calculate a systematic uncertainty for using these numbers

300 fits are made whilst varying the fractions randomly within their error bounds.

The uncertainty is then given by the RMS of the distribution of each component.

Results of this experiment can be seen in Table 5.20.

5.5.3 Fit Bias

The procedure used to study fit biases is fully described in Section 5.4.3.

In summary 500 sets of toy MC are generated and fitted for both the B+ and B−

models. Small fit biases are seen in all components. The systematic uncertainty
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Uncertainty Source BB Fraction BB Histogram qq Fraction qq Histogram ε Histogram Fit Bias Model Total

Data Sample B+ B− B+ B− B+ B− B+ B− B+ B− B+ B− B+ B− B+ B−

Nonresonant Fit Fraction (%) 0.281 0.283 0.291 0.380 0.336 0.934 2.020 0.632 0.314 0.610 1.635 0.785 1.280 3.745 2.961 4.063

f0(980) Fit Fraction (%) 0.336 0.221 0.387 0.477 0.032 0.346 1.993 0.524 0.560 0.497 2.820 1.930 1.430 3.130 3.814 3.800

f0(980) Phase 0.009 0.008 0.011 0.018 0.005 0.012 0.061 0.018 0.010 0.013 0.047 0.037 0.090 0.130 0.120 0.139

φ(1020) Fit Fraction (%) 0.052 0.031 0.044 0.213 0.018 0.008 0.150 0.192 0.279 0.244 0.252 0.124 0.110 0.160 0.425 0.429

φ(1020) Phase 0.010 0.007 0.013 0.018 0.005 0.012 0.076 0.013 0.016 0.015 0.053 0.049 0.060 0.115 0.113 0.128

(KK)00 Fit Fraction (%) 0.117 0.198 0.091 0.102 0.052 0.237 0.517 0.209 0.163 0.247 0.795 0.650 1.570 1.560 1.848 1.751

(KK)00 Phase 0.003 0.004 0.020 0.013 0.003 0.004 0.064 0.017 0.012 0.012 0.007 0.012 0.060 0.195 0.091 0.197

φ(1680) Fit Fraction (%) 0.059 0.021 0.074 0.033 0.010 0.017 0.224 0.035 0.057 0.042 0.074 0.286 2.060 0.175 2.076 0.342

φ(1680) Phase 0.006 0.002 0.033 0.020 0.004 0.017 0.070 0.025 0.016 0.022 0.020 0.041 1.035 0.225 1.038 0.233

χc0 Fit Fraction (%) 0.035 0.014 0.024 0.041 0.021 0.030 0.540 0.036 0.043 0.048 0.172 0.168 0.055 0.100 0.573 0.211

χc0 Phase 0.003 0.003 0.014 0.010 0.003 0.004 0.204 0.010 0.011 0.007 0.015 0.027 0.030 0.040 0.208 0.053

Efficiency (%) 0.007 0.007 0.005 0.007 0.001 0.000 0.020 0.017 0.063 0.062 0.010 0.020 0.045 0.080 0.080 0.106

Table 5.20: Systematic uncertainties from the Dalitz fit. The uncertainties

listed are in the same units as the fit result, i.e. fit fractions are percentages

and phases are in radians.
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5.5. Systematic Uncertainty 131

on a component is taken to be the difference between the fitted data value and the

mean of the toy distribution. Toy distribution means are shown in Tables 5.10-5.12.

Table 5.20 shows the uncertainties on each component due to fit biases.

5.5.4 Model Dependency

To give an idea of the stability of each component in the fit the differences encoun-

tered during the addition tests are studied (see Section 5.4.2). The uncertainty on

a component is taken to be the largest difference between the nominal fit and the

three addition tests. These uncertainties are shown in Table 5.20.
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5.6. Total Rate Measurement 132

5.6 Total Rate Measurement

After the event selection described in Chapter 3 2072 events are left in the Signal

Box. Of these 1058 are B+ and 1014 are B− events. The fractions of signal and

background given by the fit to mES (see Section 4.5.3) are shown in Table 5.21. The

distributions of mES in the Signal Strip is shown by Figure 5.8.

)
2

 (GeV/c
ES

m

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
v
e
n
ts

 /
 (

 0
.0

0
0
9

 G
e
V

/c

0

20

40

60

80

100

120

140

)
2

 (GeV/c
ES

m

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
v
e
n
ts

 /
 (

 0
.0

0
0
9

 G
e
V

/c

0

20

40

60

80

100

120

140

)
2

 (GeV/c
ES

m

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
v
e
n
ts

 /
 (

 0
.0

0
0
9

 G
e
V

/c
0

20

40

60

80

100

120

140

)
2

 (GeV/c
ES

m

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

 )
2

E
v
e
n
ts

 /
 (

 0
.0

0
0
9

 G
e
V

/c
0

20

40

60

80

100

120

140

Figure 5.8: The mES fits to data events; the blue curve is the total model,

the solid red is continuum and the solid green is BB background. The left

plot shows B+ events and the right B−.

The fits yield the same number of B+ and B− signal events giving an overall asym-

metry of zero. The combined sample can therefore be used to calculate the branching

fraction of B± → K±K∓K± using:

B(B± → K±K∓K±) =
Nsig

ε̄ εcNBB

, (5.2)

where Nsig is the number of signal events (given by the fit to mES), NBB is the

number of BB pairs (see Section 3.2.1), ε̄ is the average efficiency and εc is the

efficiency correction (see Section 5.7). The result for the total branching fraction is:

B(B± → K±K∓K±) = (35.1± 1.3± 2.1)× 10−6 (5.3)

where the first error is statistical and the second systematic.
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Category Combined Sample B+ sample B− sample

Signal events 1516± 46 758± 33 758± 32

qq events 486± 19 254± 14 231± 13

BB events 65± 7 35± 4 31± 3

Signal fraction (%) 73± 3 72± 4 74± 4

qq fraction (%) 24± 1 24± 2 23± 2

BB fraction (%) 3.1± 0.3 3.3± 0.4 3.0± 0.3

Table 5.21: Results for the fit to mES in the Signal Strip. The signal and qq

errors come from the fit, whereas the BB error comes from uncertainties with

the various efficiencies and branching fractions.

5.7 Systematic Uncertainties on the Total Rate

Measurement

The branching fraction is given by Equation 5.2, where the sources of uncertainty

are NBB, Nsig, ε̄ and εc.

The uncertainty on NBB, the number of BB pairs, is 1.1% [68]. The uncertainty on

the number of signal events, Nsig, is due to the fixed BB component in the mES fit.

The error is determined by twice running the mES fit, once using the lower bound

for the number of BB events and then using the upper bound. The difference in

Nsig is almost symmetric about the nominal value for the two extremes. This gives

an uncertainty of 0.2%.

The uncertainty on the average efficiency, ε̄, is made up of four components:

¦ The statistical uncertainty from the Dalitz fit, which is taken from the width

of the efficiency distribution in the toy MC tests detailed in Section 5.4.3. This
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5.7. Systematic Errors on the Total Rate Measurement 134

is 0.5% for both B+ and B−.

¦ Systematic uncertainty from the histogram and fraction fluctuation tests as

detailed in Section 5.5. The overall uncertainty from these sources is 0.5% for

both B+ and B−.

¦ Systematic uncertainty due to tracking efficiency. This was studied in a previ-

ous BABAR measurement of the B± → K±K∓K± inclusive branching fraction

to be 0.8% per track [17], giving a total systematic uncertainty of 2.4% for the

three tracks.

¦ Systematic uncertainty due to particle identification corrections. This was

again studied in the same previous analysis [17]. The uncertainty per selector

used was found to be 1.0%. As both a kaon selector and and electron selector

were used this totals 1.4% per particle, giving an overall uncertainty of 4.2%.

The efficiency corrections, εc, are determined by a study of the control channel

B+ → D0π+, where D0 → K+π−. This decay is preferred over B+ → D0K+

(D0 → K+K−) because of its much higher branching fraction of (189± 12)× 10−6

compared with (1.4 ± 0.2) × 10−6. The difference given by using a channel with a

final state of K±π∓π± is assumed to be negligible.

The differences in selection efficiencies between data and a large sample of MC are

measured and the correction needed for the MC is calculated. Details of the numbers

for each of the selection requirements can be seen in Table 5.22. The uncertainty

from εc is determined to be 3.0%.

Summing these quantities in quadrature gives an overall systematic uncertainty of

5.8% on the total rate. This corresponds to (35.1± 2.1)× 10−6.
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Requirement Data Before Data After Data Efficiency MC Before MC After MC Efficiency Correction

cos θThr 14293 13206 0.924 76770 71435 0.931 0.992± 0.013

Fisher 13206 10794 0.817 71435 59261 0.830 0.984± 0.014

mES 10794 10814 1.001 59261 59252 1.000 1.001± 0.015

∆E 10814 10363 0.958 59252 57387 0.969 0.989± 0.015

Total 0.965± 0.029

Table 5.22: Selection requirement efficiency corrections. The error on the

corrections comes from
√
n for each of the data and MC numbers used. The

total correction comes from the multiplication of the four separate corrections,

and the uncertainties are summed in quadrature. The overall fractional un-

certainty on the correction is 0.030.
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5.8 Upper Limits

For the smaller components, including those covered in the addition tests, 90% confi-

dence upper limits are calculated. To generate the upper limits toy MC experiments

are run where the sources of systematic uncertainty are fluctuated as in Section 5.5.

A cut is then imposed upon the likelihood distribution of these experiments such

that only the most likely 90% remain. The upper limit is then said to be the highest

fit fraction of the remaining experiments.

Fit fraction upper limits are shown in Table 5.23. The final branching fraction

upper limits, shown in Table 6.2, conservatively use the larger of the B+ and B− fit

fraction results.

Component 90% Confidence level upper limit

B+ B−

χc0 Fit Fraction (%) < 8.2 < 7.8

φ(1680) Fit Fraction (%) < 3.8 < 4.2

f2(1270) Fit Fraction (%) < 3.2 < 2.8

f ′2(1525) Fit Fraction (%) < 2.5 < 6.7

f0(1710) Fit Fraction (%) < 9.5 < 6.0

Table 5.23: 90% confidence level upper limits on fit fractions.
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6
Discussion and Conclusion

A summary of the fit fraction and phase results is given in Table 6.1. The uncertainty

for most components is high. The most notable aspect of the phase results is that

they are consistent between charge conjugate states (The fitter wraps phases at ±π,
thus the φ(1020) phases are consistent).

The significance of the φ(1680) is very low in B+ and quite low in B−. The main

reason behind its inclusion in the nominal fit was that it alleviated some of the

problems with multiple results in the B− fit. The multiple results observed with the

χc0 are also seen by the BELLE collaboration’s analysis of the B± → K±K∓K±
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B+ B− Combined Result

Nonresonant Fraction (%) 54.3± 9.5± 3.0 51.7± 9.0± 4.1 53.0± 9.5± 4.1

Nonresonant Phase 0.0 FIXED 0.0 FIXED 0.0 FIXED

f0(980) Fraction (%) 23.3± 8.7± 3.8 26.5± 7.7± 3.8 24.9± 8.7± 3.8

f0(980) Phase 2.21± 0.41± 0.12 1.96± 0.23± 0.15 2.08± 0.41± 0.15

φ(1020) Fraction (%) 11.2± 1.4± 0.43 13.0± 1.7± 0.43 12.1± 1.7± 0.43

φ(1020) Phase −2.99± 0.46± 0.11 2.97± 0.25± 0.13 3.13± 0.46± 0.13

(KK)00 Fraction (%) 9.9± 3.0± 1.8 8.6± 2.5± 1.8 9.3± 3.0± 1.8

(KK)00 Phase −0.84± 0.19± 0.09 −1.38± 0.23± 0.20 −1.11± 0.23± 0.20

φ(1680) Fraction (%) 0.74± 0.83± 2.1 2.4± 1.2± 0.34 1.6± 1.2± 2.1

φ(1680) Phase −0.27± 0.52± 1.0 −1.16± 0.30± 0.23 −0.71± 0.52± 1.0

χc0 Mean Fraction (%) 4.5± 1.2± 0.64 5.0± 1.3± 0.34 4.8± 1.3± 0.64

χc0 Phase A −0.35± 0.33± 0.21 −0.56± 0.26± 0.04 −0.46± 0.33± 0.21

χc0 Phase B 0.58± 0.21± 0.21 0.65± 0.22± 0.06 0.62± 0.22± 0.21

Table 6.1: Dalitz plot fit results. The first error is statistical and the second is

systematic. The mean of the two leading solutions is taken for all components

other than the χc0 phase, where both solutions are given. The combined result

is the mean of both B+ and B− results.

Dalitz plot [34] and a parallel BABAR analysis [69]. Both analyses used different

fitting software and different nominal signal models from this analysis and so one

can conclude that the multiple solutions problem is independent of these factors.

Also consistent between this analysis and the aforementioned Dalitz analyses is a

large, non-uniform nonresonant term and a large, wide, undetermined resonance

around 1.5GeV/c. All three analyses see two solutions for the (KK)00 (1500) magni-

tude, one unphysically large solution and a smaller solution. This analysis is however

the only one to favour the smaller solution. However when the same exponential

nonresonant model as BELLE is used then the large solution is favoured. The same

1.5GeV/c feature is seen in the BABAR analysis of B0 → K0
S
K+K− [70].
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A paper published in 2005 by Minkowski and Ochs based upon the BELLE results in

[34] postulates that the feature around 1.5GeV/cmight be caused by the constructive

interference of f0(1500) and a wide glueball background [71]. Further interference

between the glueball and f0(980) also has the potential to remove the need to use a

non-uniform nonresonant model.

Partial branching fractions are calculated by multiplying the fit fractions by the

total rate, (35.1 ± 1.3 ± 2.1) × 10−6. The statistical and systematic errors are also

combined. The branching fraction and asymmetry results are summarised by Table

6.2.

Mode B(B → Mode)(10−6) 90% CL UL (10−6) ACP (%)

K±K∓K± Total 35.1± 1.3± 2.1 0.0± 3.0± 4.2

K±K∓K± nonresonant 18.6± 3.4± 1.8 −2± 13± 5

f0(980)K
±; f0(980)→ K+K− 8.7± 3.1± 1.4 6± 21± 11

φ(1020)K±; φ(1020)→ K+K− 4.3± 0.6± 0.3 7.4± 8.0± 2.5

(KK)00K
±; (KK)00 → K+K− 3.3± 1.1± 0.7 −7± 25± 14

χc0K
±; χc0 → K+K− 1.7± 0.5± 0.1 < 2.9 6± 17± 6

φ(1680)K±; φ(1680)→ K+K− < 1.5

f2(1270)K
±; f2(1270)→ K+K− < 1.1

f ′2(1525)K
±; f ′2(1525)→ K+K− < 2.4

f0(1710)K
±; f0(1710)→ K+K− < 3.3

Table 6.2: Summary of measurements of branching fractions (averaged over

charge conjugate states), 90% confidence upper limits on branching fractions

and CP asymmetries. The first error is statistical, and the second is systematic.

Due to the large uncertainties the statistical significance of the f0(980) and (KK)00

branching fractions is low. Upper limits are however not given as any such limit

would apply only to this particular signal model, and therefore would be potentially

misleading. Section 1.5.1 describes how the BES collaboration’s f0(980) results give
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the ratio of B(f0(980)→K+K−)
B(f0(980)→π+π−)

to be 0.92±0.07. This is consistent with the ratio of our

f0(980)→ K+K− measurement and the previous f0(980)→ π+π− measurement by

BABAR, which is 0.92 ± 0.41, where the error is given by combining the statistical

and systematic errors in quadrature. It is also consistent with the ratio 0.69± 0.32

reported in the parallel BABAR analysis [69].

Using the φ(1020)→ K+K− and χc0 → K+K− branching fractions given in [9] the

overall branching fractions for B± → φ(1020)K± and B± → χc0K
± are calculated

to be (8.6 ± 1.3 ± 0.6 ± 0.1) × 10−6 and (3.1 ± 0.9 ± 0.2 ± 0.3) × 10−4, where the

final error is due to the uncertainty on the branching fraction. Both are consistent

with previous measurements ([17], [34], [35], [36]). It is worth noting that of the two

solutions for χc0 the “A” solution ((2.1±0.6±0.2±0.2)×10−4) is consistent with the

PDG average of (1.6+0.5
−0.4), whereas the “B” solution ((4.1± 0.9± 0.3± 0.5)× 10−4)

is not.

The asymmetry results are all consistent with zero, which is consistent with previous

experiments ([32], [35], [36], [69]). Current experimental uncertainties are however

too high to be able to probe the theoretical asymmetries predicted by [19] and [23].

This analysis has seen evidence of an unknown state at around 1.5GeV/c. Also a

relatively large branching fraction for B± → f0(980)K
±; f0(980)→ K+K−has been

measured, albeit with large uncertainty. With improved statistics, and if a way

can be found to eliminate the fit biases seen in this analysis, there is definitely the

potential to reduce these uncertainties greatly. It would be interesting to fit to the

model proposed by Minkowski and Ochs to examine whether it would be a better

fit to the data, and whether the current nonresonant model could be dispensed with

in favour of a more traditional flat model.

With relatively unknown states taking up almost 90% of the Dalitz plot there is

obviously plenty of scope for further investigation.
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