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ABSTRACT

The charged particle multiplicity is measured for inelastic and non-single-diffractive
proton-proton collisions at collision energies of 900 GeV, 2760 GeV and 7000 GeV.
The data analysed corresponds to an integrated luminosity of 0.152 ± 0.003 pb−1,
1.29 ± 0.07 pb−1 and 2.02 ± 0.12 pb−1 for each respective collision energy. The
average transverse momentum per event as a function of charged multiplicity, for
tracks with transverse momentum above 150 MeV/c and 500 MeV/c, is measured
for inelastic proton-proton collisions.

Two methods of deconvolution were studied, and an iterative method was used to
correct the multiplicity distributions. The effect of pileup on multiplicity measure-
ments was modelled using a toy Monte Carlo.

The results presented extend the previous measurements made by ALICE to more
than ten times the average charged multiplicity, and are compared to results from
other experiments at similar energies, and to the Monte Carlo generators Phojet
and the Perugia-0 tune of Pythia. The pseudorapidity density is estimated from the
multiplicity distributions, and found to agree with other experimental results.

The Phojet generator reproduces well the 900 GeV multiplicity distribution, but
otherwise it and Pythia both underestimate the probability of higher multiplicities.
The Pythia generator reproduces well the average transverse momentum distribution
for tracks above 500 MeV/c, and overestimates the lower momentum distribution,
while Phojet tends to underestimate the distribution for both momentum thresholds.

Evidence of the violation of KNO scaling is shown for non-single-diffractive events
in a pseudorapidity interval of ±1, but not in ±0.5.

i



AUTHOR’S CONTRIBUTION

The ALICE experiment is a massive collaborative effort from design and running to
reconstruction of data and software development, and without the entire collabora-
tion’s combined effort, this work would not have been possible. The work presented
in this thesis is entirely written by me.

As part of my duties towards the running of the ALICE detector, I was responsible
for the Central Trigger Processor (CTP) during shifts in the control room of the
experiment, and on-call shifts for which I would provide assistance to the shift
leader over the phone or internet. I also contributed to the development of software
necessary for CTP monitoring.

I contributed to the development of the track selection algorithm used in the mul-
tiplicity analysis of this thesis, and its implementation into the analysis software
framework used by all members of the ALICE collaboration.

I was responsible for maintaining the template analysis code for a physics working
group, ensuring its availability to the group and consistency with analysis decisions
common to the whole working group. This led to my creating a tutorial analysis
template for people new to the ALICE analysis software framework, and is contained
in the software code. I studied the effect of pileup in proton-proton collisions, and
created a simulation that considered the tracking performance and pileup detection
of the ALICE detector to predict the contribution of pileup to the data sample.
My analysis measures the charged particle multiplicity and the mean transverse
momentum per event as a function of charged particle multiplicity. The main body
of work for the multiplicity measurement was the study and development of two
deconvolution methods for extracting the true distribution from measured data,
and developing the error propagation and consistency checks to ensure successful

ii



deconvolution. For both the mean momentum and multiplicity analyses, I developed
my own analysis framework to produce the measured distributions, efficiencies and
corrections used in creating the corrected results. The analysis framework of the
collaboration was used by me to run my analysis over the reconstructed data using
distributed computing. I created a toy Monte Carlo to estimate the covariance
matrices used in the deconvolution methods to test for convergence to a solution.

iii



To my mother Kuldeep, my sister Gurpreet, and in memory of my father Amarjit

iv



ACKNOWLEDGEMENTS

I thank my supervisors David Evans and Lee Barnby, who guided me and worked
with me throughout my PhD. They were invaluable to me as sources of encourage-
ment and advice, along with the rest of the Birmingham group; Orlando Villalobos-
Baillie, Roman Lietava, Peter Jones, Cristina Lazzeroni, Anju Bhasin, Gron Tudor
Jones, Frank Votruba, Marek Bombara, Daniel Tapia Takaki, Anton Jusko and
Marian Krivda. The evenings we spent at the ALICE flat were particularly fun!

I am grateful to David Evans, Paul Newman and Peter Watkins for offering me the
PhD position, and to the STFC and the University of Birmingham for funding me,
and the UK Liaison Office for helping me move to and from my stay at CERN. I
would also like to thank the Birmingham Particle and Nuclear Physics groups for
being a friendly and welcoming environment to work.

I offer particular gratitude to Plamen Petrov, with whom I shared the whole PhD
experience, and had many fantastic discussions with. It would not have been the
same without you, buddy.

I’m glad I got to share an office with Patrick Scott, Sparsh Navin, Zoe Matthews,
Ravjeet Kour, Angela Romano, Graham Lee, Luke Hanratty and Didier Alexandre;
I really enjoyed our times together. To the people I met at CERN, I thank Lucy
Renshall-Randles for helping me settle at CERN, Deepa Thomas for our interesting
conversations, and everyone I worked with on shift at the control room and in the
working groups. And to Mark Stockton, Jody Palmer, and the rest of the skiing
LTA students, our times shredding the slopes was brilliant!

To my friends closer to home who helped me relax, I thank Chandni Ladva, Rich
Powis, Phil “Wrexy” Brown, Lyn Rycroft and Hardeep Bansil, and all my friends
from Leamington, you guys are awesome.

v



Finally, I wish to thank my family, my mum Kuldeep who looked after me, my sister
Gurpreet who encouraged and inspired me, and my dad Amarjit who believed in me
all my life.

vi



CONTENTS

1 Theory 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Quantum ChromoDynamics . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The Quark Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Colour and SU(3) symmetry . . . . . . . . . . . . . . . . . . . 6

1.2.3 Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Asymptotic Freedom . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Quark-Gluon-Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 De-confinement . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Kinematic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Proton-Proton Collisions . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Event Classification . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 Pomeron exchange . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



CONTENTS

1.5.3 Simulating Proton-Proton Collisions . . . . . . . . . . . . . . 23

1.6 Koba-Nielsen-Oleson scaling . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Negative Binomial Distribution . . . . . . . . . . . . . . . . . . . . . 27

1.7.1 Interpretation of Multiplicity Distributions . . . . . . . . . . . 29

1.8 Previous Experimental Results . . . . . . . . . . . . . . . . . . . . . . 33

1.8.1 Charged Particle Multiplicity . . . . . . . . . . . . . . . . . . 33

1.8.2 Mean Transverse Momentum . . . . . . . . . . . . . . . . . . 41

1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 The ALICE experiment at the LHC 48

2.1 The LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 The ALICE detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Inner Tracking System . . . . . . . . . . . . . . . . . . . . . . 55

2.2.2 Time Projection Chamber (TPC) . . . . . . . . . . . . . . . . 58

2.2.3 Transition Radiation Detector (TRD) . . . . . . . . . . . . . . 61

2.2.4 Time of Flight (TOF) Detector . . . . . . . . . . . . . . . . . 62

2.2.5 Electromagnetric Calorimeter (EMCal) . . . . . . . . . . . . . 63

2.2.6 High Momentum Particle Identification Detector (HMPID) . . 64

2.2.7 Photon Spectrometer (PHOS) . . . . . . . . . . . . . . . . . . 64

2.2.8 Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.9 Zero Degree Calorimeters (ZDC) . . . . . . . . . . . . . . . . 66

2.2.10 Photon Multiplicity Detector (PMD) . . . . . . . . . . . . . . 66

2.2.11 Forward Multiplicity Detector (FMD) . . . . . . . . . . . . . . 67

2.2.12 V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.13 T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



CONTENTS

2.2.14 ALICE COsmic Ray DEtector (ACORDE) . . . . . . . . . . . 68

2.3 Central Trigger Processor (CTP) . . . . . . . . . . . . . . . . . . . . 69

2.4 Data AQuisition (DAQ) . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 High Level Trigger (HLT) . . . . . . . . . . . . . . . . . . . . . . . . 73

2.6 Detector Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Multiplicity and Mean pT 75

3.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.1 Trigger Selection . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.2 Vertex Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Primary Track Selection . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Pileup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1 Average Number of Interactions, µ . . . . . . . . . . . . . . . 90

3.3.2 Pileup Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.3 Discoverable Pileup . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Multiplicity Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Unfolding the Multiplicity Distribution . . . . . . . . . . . . . . . . . 101

3.5.1 Naive Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5.2 Single Value Decomposition Unfolding . . . . . . . . . . . . . 106

3.5.3 Unfolding Based on Bayes Theorem . . . . . . . . . . . . . . . 113

3.6 Mean pT as a Function of Multiplicity . . . . . . . . . . . . . . . . . . 125

3.7 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.7.1 Charged Particle Multiplicity . . . . . . . . . . . . . . . . . . 137

3.7.2 Mean pT as a function of Charged Particle Multiplicity . . . . 140

3.7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

ix



CONTENTS

4 Results 143

4.1 Charged Particle Multiplicity . . . . . . . . . . . . . . . . . . . . . . 144

4.2 Pseudorapidity Density Approximation . . . . . . . . . . . . . . . . . 154

4.3 KNO scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.4 Mean pT as a function of Charged Multiplicity . . . . . . . . . . . . . 160

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5 Conclusion 166

x



LIST OF FIGURES

1.1 Simplest QED and QCD couplings . . . . . . . . . . . . . . . . . . . 7

1.2 Virtual particle loops in QED and QCD . . . . . . . . . . . . . . . . 9

1.3 Phase Diagram of Nuclear Matter . . . . . . . . . . . . . . . . . . . . 12

1.4 Rapidity Distribution of Diffractive Processes . . . . . . . . . . . . . 20

1.5 Chew-Frautschi plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Examples of Negative Binomial Distributions . . . . . . . . . . . . . . 28

1.7 KNO scaling at ISR energies . . . . . . . . . . . . . . . . . . . . . . . 34

1.8 UA5 Multiplicity distribution of NSD pp collisions at
√
s = 200, 546

and 900 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.9 UA5 NSD Multiplicity at
√
s = 900 GeV with fit to sum of 2 NBDs . 36

1.10 Violation of KNO scaling with increasing collision energy . . . . . . . 37

1.11 CDF Multiplicity in KNO variables for soft and hard events at
√
s =

600, 1800 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.12 ALICE and CMS published multiplicity distributions . . . . . . . . . 39

1.13 CMS Multiplicity in KNO variables for |η| < 0.5 and |η| < 2.4 . . . . 40

xi



LIST OF FIGURES

1.14 Pseudorapidity density for proton-proton collisions as a function of
collision energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.15 ALICE published mean pT versus NCH at
√
s = 900 GeV with com-

parisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.16 CDF mean pT versus NCH at
√
s = 630 and 1800 GeV, for minimum

bias, soft and hard events. . . . . . . . . . . . . . . . . . . . . . . . . 44

1.17 ALICE mean pT versus NCH for soft and hard events at
√
s = 900

and 7000 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.18 Mean pT versus collision energy from various experiments . . . . . . . 46

2.1 Schematic layout of the LHC . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 The LHC hadron injector complex . . . . . . . . . . . . . . . . . . . . 50

2.3 The ALICE detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 The Pseudorapidity coverage of the ALICE detectors . . . . . . . . . 54

2.5 Schematic layout of the six layers of the ITS . . . . . . . . . . . . . . 55

2.6 Diagram of the TPC field cage . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Track finding efficiency for just the TPC, and the TPC and ITS com-
bined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8 Monitoring tool for CTP trigger rates . . . . . . . . . . . . . . . . . . 72

3.1 Acceptance of global tracks . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Acceptance of SPD tracklets . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Combined triggering and vertexing efficiencies for |η| < 1.0 inelastic
and NSD events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Perpendicular distance of closest approach of tracks with SPD hits to
vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Perpendicular distance of closest approach of tracks without SPD hits
to vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Perpendicular distance of closest approach of tracks with and without
SPD hits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



LIST OF FIGURES

3.7 Secondary contamination of accepted tracks as a function of pT . . . 89

3.8 z-dca to primary vertex of primary and secondary tracks . . . . . . . 92

3.9 Relative abundance of multiple-interaction multiplicity distributions
for a given interaction probability . . . . . . . . . . . . . . . . . . . . 93

3.10 Fraction of pileup events with vertex separation in z less than ∆z as
a function of ∆z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11 Fraction of pileup per multiplicity bin, from pileup simulation of
7 TeV data, before and after removal of tagged pileup events. . . . . . 96

3.12 Effect of pileup removal on multiplicity distributions . . . . . . . . . . 97

3.13 Correlation of Multiplicity Counting Methods with True Multiplicity 101

3.14 The spread of measured multiplicities for a true multiplicity of 20 . . 102

3.15 Response Matrices with Physical and Flat Multiplicity Distributions . 103

3.16 Unfolding using the inverse of the response matrix . . . . . . . . . . . 104

3.17 Removal of isolated multiplicity bins . . . . . . . . . . . . . . . . . . 106

3.18 Distribution of the SVD rotated measured vector, to choose regular-
isation parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.19 SVD unfolding with Minimum Bias response . . . . . . . . . . . . . . 111

3.20 SVD unfolding with Flat Multiplicity response . . . . . . . . . . . . . 112

3.21 Two steps of Bayesian Iterative Unfolding . . . . . . . . . . . . . . . 116

3.22 Many steps of Bayesian Iterative Unfolding . . . . . . . . . . . . . . . 117

3.23 Alternative stopping criteria for iterative unfolding . . . . . . . . . . 122

3.24 Model Dependence of Bayesian Unfolding with Minimum Bias Response124

3.25 Model Dependence of Bayesian Unfolding with Flat Multiplicity Re-
sponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.26 ITSTPC track transverse momentum resolution . . . . . . . . . . . . 128

3.27 ITS complimentary track transverse momentum resolution . . . . . . 129

xiii



LIST OF FIGURES

3.28 ITSTPC tracking efficiency as a function of pT . . . . . . . . . . . . . 131

3.29 Mean pT versus multiplicity using 900 GeV Pythia data . . . . . . . . 133

3.30 Mean pT versus multiplicity using 2760 GeV Phojet data . . . . . . . 134

3.31 Mean pT versus multiplicity using 7000 GeV Pythia data . . . . . . . 135

3.32 ITSTPC and ITS complimentary tracking efficiency as a function of pT137

4.1 Example of unfolded multiplicity distribution of inelastic events with√
s = 7000 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2 Multiplicity of NSD events within |η| < 0.5 . . . . . . . . . . . . . . . 146

4.3 Multiplicity of NSD events within |η| < 1.0 . . . . . . . . . . . . . . . 147

4.4 Multiplicity of inelastic events within |η| < 0.5 . . . . . . . . . . . . . 148

4.5 Multiplicity of inelastic events within |η| < 1.0 . . . . . . . . . . . . . 149

4.6 Comparison of NSD multiplicity distribution in |η| < 0.5 at
√
s =

900 GeV to other experimental results and generators . . . . . . . . . 150

4.7 Comparison of NSD multiplicity distribution in |η| < 1.0 at
√
s =

2760 GeV to other experimental results and generators . . . . . . . . 151

4.8 Comparison of inelastic multiplicity distribution in |η| < 1.0 at
√
s =

7000 GeV to other experimental results and generators . . . . . . . . 152

4.9 Comparison of NSD multiplicity distribution in |η| < 1.0 at
√
s =

7000 GeV to other experimental results and generators . . . . . . . . 153

4.10 Multiplicity of inelastic events in |η| < 0.5 for tracks above a pT
threshold, compared to generators . . . . . . . . . . . . . . . . . . . . 154

4.11 Multiplicity of inelastic events in |η| < 1.0 for tracks above a pT
threshold, compared to generators . . . . . . . . . . . . . . . . . . . . 155

4.12 Multiplicity distributions of NSD events plotted in KNO variables . . 157

4.13 Cq moments of NSD multiplicity distributions as a function of collision
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.14 Mean pT as a function of multiplicity measured at
√
s = 900, 2760

and 7000 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xiv



LIST OF FIGURES

4.15 Mean pT as a function of multiplicity at
√
s = 900 GeV compared to

previous experimental results and generators . . . . . . . . . . . . . . 163

4.16 Mean pT as a function of multiplicity at
√
s = 2760 GeV compared

to generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.17 Mean pT as a function of multiplicity at
√
s = 7000 GeV compared

to generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xv



LIST OF TABLES

1.1 Standard Model fermions . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Trigger efficiencies in percent for the MBOR and MBAND triggers in se-
lecting events with given processes . . . . . . . . . . . . . . . . . . . 79

3.2 Diffractive fractions and inelastic cross sections . . . . . . . . . . . . 80

3.3 Vertex selection according to pseudorapidity interval . . . . . . . . . 83

3.4 Track quality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.5 Summary of systematic uncertainties . . . . . . . . . . . . . . . . . . 142

4.1 Pseudorapidity density of charged particles in |η| < 0.5 . . . . . . . . 156

4.2 Cq moments of measured NSD multiplicity distributions for |η| < 0.5 159

4.3 Cq moments of measured NSD multiplicity distributions for |η| < 1.0 159

xvi



CHAPTER 1

THEORY

1.1 Introduction

This chapter provides an introduction to the theory of interactions between sub-

atomic particles, focusing on strongly interacting matter and the implications for it

at high energy densities probed by nucleus-nucleus collisions, where strongly bound

matter becomes deconfined. The framework of describing particle collisions is briefly

outlined, defining useful variables used throughout this work. The importance of

studying proton-proton collisions, in reference to heavy-ion collisions and on its own

1



1.1. INTRODUCTION

merits, particularly with the low-momentum capabilities of ALICE, are considered,

focusing on the measurements of charged particle multiplicity and average transverse

momentum as a function of multiplicity. The modelling of proton-proton collisions is

outlined, looking at the theory of parton-parton interactions and the description of

diffraction. The charged particle multiplicity of proton-proton collisions is discussed,

and an introduction to models describing and interpreting the observed results are

given. Finally, results from previous collider experiments of multiplicity and average

transverse momentum are given.

1.1.1 Standard Model

The constituents of matter and the carriers of the forces, through which matter in-

teracts, are fundamental particles. The interactions of the strong, weak and electro-

magnetic forces, and the constituents of matter are described by the gauge theories

of the Standard Model (SM) [1].

Fermions

Fermions are particles with intrinsic spin (angular momentum) of half-integer values,

so they obey the Pauli-Exclusion Principle, and each particle has an anti-particle

with opposite charge but the same mass.

Leptons are a sub-group of this particle type, an example from ordinary matter is

2



1.1. INTRODUCTION

the negatively charged electron. Heavier “flavours” of the electron also exist, the

muon, µ and tau-lepton, τ in order of increasing mass. Each type of electron has an

associated neutrino, an electrically neutral particle of almost zero mass.

Quarks make up the other sub-group of fermions. They come in six flavours, have

fractional electric charge, and carry “colour” charge which defines their coupling to

the strong force. They each have baryon number 1
3

(anti-quarks have baryon number

−1
3
) and combine in threes to form baryons, or quark and anti-quark pairs to form

mesons; both combinations have zero net colour charge.

The fermions may be grouped into three generations, as shown in Table 1.1. The first

generation particles are the most stable and make up most of the observed matter in

the Universe. The higher, and heavier, generations are unstable and decay to lower

generation particles via weak interactions.

Table 1.1: Standard Model fermions

Generation I II III

Quarks
up charm top

down strange bottom

Leptons
e µ τ

νe νµ ντ

3



1.1. INTRODUCTION

Bosons

The interactions between all these particles are mediated by bosons, having integer

values of spin. Electromagnetism is mediated by the electrically neutral photon,

described by the theory of Quantum Electro-Dynamics (QED). The Strong force

is mediated by massless gluons. Unlike the photon which has no electric charge,

gluons themselves have a colour charge, and can self-interact. The theory of colour

interactions is called Quantum Chromo-Dynamics (QCD), and is discussed in more

detail in the next section.

The Weak force has three bosons, two electrically charged (W±) and one neutral

(Z0), which allow fermions to change flavour and, contrary to the theory of gauge

bosons, also have mass (thus limiting the range of the Weak force) [2]. This discrep-

ancy is alleviated with the inclusion of the Higgs boson [3, 4, 5], allowing particles

to acquire mass by coupling to a Higgs field, crucially giving W± and Z0 mass but

leaving the γ massless, as seen experimentally. The acquisition of their particular

masses by the weak bosons is an example of spontaneous symmetry breaking, al-

lowing the weak and electromagnetic bosons to exist as distinct particles with their

observed masses (or lack thereof) while at higher energies they combine to form the

bosons of the Electro-Weak force. Evidence of the Higgs boson is reported in [6, 7].
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1.2 Quantum ChromoDynamics

1.2.1 The Quark Model

Quarks are the partons, which form hadrons, proposed by Gell-Mann [8] and Zweig [9]

around 1964 to account for the properties of the many new hadrons observed at that

time. Many of the new particles, such as the kaon, exhibited longer decay times

than other mesons; they were produced via the strong force but were seen to decay

weakly. These ‘strange’ new particles were assigned a strangeness quantum number

conserved by strong interactions, but not by weak. Strangeness, along with electric

charge and isospin value I3
1, were used to catalogue baryons and mesons of similar

mass into patterns called ‘multiplets’. It was first applied to the lightest mesons

and baryons to make octets, and so was called the ‘Eightfold Way’ [1], extended to

groups of larger mass baryons to make other patterns, such as the baryon decuplet.

This approach led to the prediction of new states, yet to be discovered at the time,

including the triply strange Ω− baryon, leading to the quark model of hadrons. The

baryons were known to be fermions, being made of three spin-half partons, thus

requiring an overall anti-symmetric wave-function in order to obey Pauli’s Exclu-

sion Principle. This was seen to be violated by certain combinations of 3 identical

1Isospin is a quantum number motivated by the symmetry seen between the proton and neutron

in relation to their difference in mass and their strong interactions. They both have isospin value 1
2 ,

the proton with an isospin projection I3 of +1
2 and neutron of − 1

2 . The value I3 is now understood

as the up and down quark content of a partonic state.

5



1.2. QUANTUM CHROMODYNAMICS

quarks, a problem that is removed with the introduction of the colour charge to the

quarks [10].

1.2.2 Colour and SU(3) symmetry

Colour charge is a property held by strongly interacting particles, initially pro-

posed to explain the existence of baryons with valence quarks in seemingly identical

quantum states. Unlike the electric charge of QED which has one value and one

anti-value (it can be positive or negative), a quark’s colour charge has a value of

either red, green or blue, with the anti-quarks carrying colour charge of anti-colour.

The requirement of the quarks to be in different quantum states showed that all

observed baryons are colourless, they contain equal amounts of all three values of

colour charge. This is known as a colour ‘singlet’ state, and is the colour state of

mesons as well, where the quark has the opposite colour of the anti-quark.

Colour generates an exact SU(3) symmetry [2], and is completely conserved in strong

interactions. As baryons are colourless, they must be in a colour singlet state which

is an anti-symmetric state, requiring the other contributions to its wave-function

to be completely symmetric (fermions must have an anti-symmetric wave-function).

This is confirmed in the multiplets of observed baryons.

The mediator of the strong force is the gluon, a colour-charged massless boson which

can take one of eight colour states, but not the singlet colour state. Thus the gluon

6
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acts on quarks with colour charge, not a colourless hadron as a whole.The strong

interaction between hadrons can be understood as an exchange of colourless mesons

over a short range (less than a hadron’s radius).

The gluon mediated interaction of quarks is the QCD equivalent to the QED coupling

of two fermions and a photon, as shown in Figure 1.1. Gluons can couple also to

other gluons, allowing more complex QCD processes to occur.

Figure 1.1: (1st) The QED coupling of a charged fermion to a photon. (2nd) The QCD coupling

of a quark to a gluon. (3rd) The QCD coupling of three gluons. (4th) The QCD coupling of four

gluons.

1.2.3 Confinement

A property of coloured particles is that of confinement; no free colour charged par-

ticle is observed, it is always in a colourless bound state. This is illustrated by the

gluons carrying colour charge, and thus never appearing as free themselves. As the

strong force is observed only over short distances, typically ∼ 1 fm, it means that a

free colour singlet gluon cannot exist, otherwise the range of the strong force would

be infinite (like electromagnetism).

Another understanding of confinement is through the QCD potential (Vs) which,

7



1.2. QUANTUM CHROMODYNAMICS

like that of QED, follows an inverse proportionality to the range, however it also

includes a linear term;

Vs = −4

3

αs
r

+ kr , (1.1)

where αs is the strong coupling ‘constant’ which is small at small distances and

large for large distances, r is the distance and k is an energy density calculated to

be 0.85 GeV fm−1 [2]. As the distance between two coloured particles increases, the

exchange of gluons between them form a gluon field that is stretched into a tube.

Like the electric field lines between two charged particles, the colour force between

quarks can be represented as field lines, but the gluon self interaction pulls the

colour lines together, constricting the force lines into a tube. The attractive linear

term of the potential dominates, and as the quarks separate, the energy stored

in the potential becomes high enough that a quark-anti-quark pair is created, an

energetically favourable situation over two free quarks. Thus, quarks are always

found in a colour neutral bound state.

1.2.4 Asymptotic Freedom

The strong coupling ‘constant’ αs in equation 1.1 is actually a running coupling;

it is not constant at all. This is due to vacuum polarisation; virtual particles of

colour charge around the quark are polarised such that from a certain distance the

charge is partially cancelled out. This is represented in Feynman diagrams as loops

of virtual particles in the propagator, as shown in Figure 1.2.

8
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Figure 1.2: Loop diagrams showing vacuum polarisation with a fermion loop for a simple QED

interaction (left) and QCD (middle), and with a gluon loop for QCD (right). Note that these

represent the simplest vacuum polarisation loops, there are higher order contributions from multiple

loops in the propagator to increasingly complex loop structures.

QED has the same phenomenon with virtual leptons leading to charge screening,

but for QCD the gluon contribution must be taken into account. As the gluon

itself carries a colour and anti-colour charge, and can interact with other gluons, a

gluon can give rise to another pair of gluons, with polarisation such that the colour

field of the quark is enhanced; the colour charge is anti-screened. Thus, there are

two competing screenings; one from quark-anti-quark loops which screen the colour

charge, and another from gluon loops which enhance it.

The running coupling of the strong force for a momentum transfer of |q2| can be

expressed as:

αs(|q2|) =
αs(µ

2)

1 + 1
12π

(11c− 2f)αs(µ2) ln( q
2

µ2
)

(1.2)

where µ2 is a momentum transfer for which the strong coupling is known, c is the

9
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number of colours (3), and f is the number of quark flavours (6) [1]. The energy

scale ΛQCD above which perturbative QCD is applicable is represented to leading

order in equation 1.3, and is approximately 200 MeV;

ln Λ2
QCD = lnµ2 − 12π

(11c− 2f)αs(µ2)
. (1.3)

This calculation is only valid while the coupling is considerably less than 1, as

it relies on perturbation theory. For low momentum transfer interactions, where

|q2| ∼ Λ2
QCD, the strong coupling blows up in this formalism as αs ∼ 1, and per-

turbation theory can no longer be applied. For q2 >> Λ2
QCD, the coupling constant

weakens significantly, as the anti-screening effect of virtual gluons dominates over

the screening from virtual quarks. This effect is represented in the term comparing

the number of colours and quark flavours in the denominator of the strong coupling.

It is in this regime that perturbative calculations may be applied to QCD processes

such as interaction cross-sections.

1.3 Quark-Gluon-Plasma

1.3.1 De-confinement

Quarks are not found free in nature, they are confined in groups called hadrons.

The theory of QCD predicts that above some critical energy density, the system of

quarks and the gluons that hold them together undergo a phase transition which
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allows them to move freely. This state of de-confinement is known as a Quark-

Gluon-Plasma (QGP) [11], in which there are free colour-charged partons.

The Universe is thought to have existed in this state for the first few microseconds

after the Big Bang, its expansion and cooling allowing hadrons to form. The con-

ditions required to form a QGP can be created at particle colliders with heavy-ion

collisions.

1.3.2 Properties

Calculations using the Lattice QCD framework [12] yield equilibrium properties of

the QGP. It uses a discrete model of space-time as a lattice to model QCD inter-

actions that introduces a momentum cut-off related to the lattice spacing. This re-

moves divergences encountered in perturbative QCD due to large coupling strengths,

and thus allows calculations of both confinement and the de-confined state.

By extrapolating the lattice spacing towards zero, the continuum is reproduced. Lat-

tice QCD predicts that a critical temperature Tc ∼ 170 MeV is required for quarks

to become de-confined, and also a critical energy density εcr ∼ 1 GeV/fm3 [13].

This assumes a zero baryon chemical potential µB, understood as zero net baryon

number (the number of baryons and anti-baryons is equal) per unit volume, for

which increasing temperature results in a rapid change to a QGP. The limitation

of lattice QCD calculations is that it is only calculable for zero (or very small) net
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baryon chemical potential. Calculations for non-zero µB indicate a first order phase

transition to QGP at the critical energy density εcr. The phase diagram of nuclear

matter is shown in Figure 1.3 as a function of temperature and baryon chemical

potential.

Early universe

LHC

Quark Gluon Plasma

Atomic Nuclei
Colour Superconductor

Critical point

Hadronic phase

baryon chemical potential        (GeV)
10

Figure 1.3: Phase diagram of nuclear matter. Cold nuclear matter such as nuclei exist at baryon

chemical potential of ∼ 1 GeV. Heating matter causes excitations as hadron resonances to appear,

before crossing into de-confinement. Above some value of baryon chemical potential, the change to

a QGP is a first order phase transition at a critical energy density.

With increasing collision energy, hadrons become more transparent to each other,

and systems produced from parton collisions have fewer remnants of the colliding

hadrons; thus the baryon chemical potential decreases, approaching the condition

of the early Universe.
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Methods using the MIT Bag Model with statistical techniques find a similar critical

temperature requirement for de-confinement [14].

A consequence of de-confinement is the shedding of the quarks’ mass to leave the

bare quark mass. The constituent mass of a quark is generated by the binding of

the quarks into hadrons, which accounts for 99% of the mass of normal matter [15].

In relativistic heavy ion collisions, the colliding nuclei (modelled as flat discs due

to relativistic length contraction) meet and pass mostly through each other, leaving

behind scattered remnants. Before these have time to re-scatter and thermalise, hard

parton-parton interactions produce high momenta particles in the early stages of the

collision, which are not released into a free vacuum as in proton-proton collisions, but

immediately interact with the nuclei remnants from the collision. This re-scattering

can form the dense, strongly-interacting matter which can, with a high enough

energy density and rapid enough thermalisation (within 1 fm/c of the collision),

form a QGP.

This ‘fireball’ of de-confined coloured partons produces many new particles through

their elastic and inelastic interactions, which leads to the equipartition of the de-

posited energy of the collision. Only the inelastic collisions change the chemistry of

the system, that is the abundances of the different types of partons (gluons, light

and heavy quarks).

The rapidly thermalised system has an internal pressure against the surrounding

vacuum, and expands and cools. The expansion happens over a time scale of the
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order of 15 fm/c after the collision. When the energy density drops below the

critical requirement for QGP, the partons hadronise into confined states of hadrons.

The temperature of the system drops below the chemical freeze out temperature

Tch, so that inelastic collisions no longer contribute to the changing of the chemical

composition of the system, and the relative abundances of the types of particles are

frozen out. Elastic collisions still occur for a time, keeping the system in thermal

equilibrium until the temperature drops below the kinetic freeze out temperature Tk,

where the particles decouple from each other completely with no more re-scattering,

and the distribution of the particles’ momenta reflects the temperature of the system

at this point.

The QGP state is known to be a dense, strongly interacting medium as it reduces

the energy of fast partons that would go on to produce jets; this is known as jet-

quenching [16]. It also exhibits an increase in strange quark production compared to

lower energy heavy-ion collisions that do not produce a QGP, as the energy threshold

is reduced by the shedding of some of the quark’s mass [17].

Much of the understanding of heavy-ion collisions, and the QGP in particular, re-

quires comparison to proton-proton collisions in which there is no large volume of

dense coloured matter. Thus it is a vital part of a heavy-ion physics programme to

study and understand proton-proton interactions, in order to provide an experimen-

tal control where a QGP is not expected to form, and thus highlight the aspects of

heavy-ion collisions that are due to the QGP. There also aspects of proton-proton
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physics that are more accessible to ALICE than other LHC experiments, such as

low momentum tracking and particle identification.

It has been suggested, however, that proton-proton collisions at LHC energies may

produce a QGP state in very high multiplicity events [18]. For nucleus-nucleus

collisions, the initial energy density of the system was shown by Bjorken [19] to be:

ε =
1

τA

dET
dy

, (1.4)

where A is the cross-sectional area of the colliding nuclei, and τ is the time for a

QGP to form which, though still under debate, is taken as roughly less than or

approximately equal to 1 fm/c.

The average transverse energy dET

dy
carried by particles produced roughly at cen-

tral rapidity is related to the multiplicity at central rapidity and mean transverse

momentum pT by:

dET
dy
' dNCH

dy
pT . (1.5)

At RHIC, colliding gold nuclei at
√
sNN = 200 GeV has given an initial energy

density above 5 GeV/fm3 [20], and lead nuclei collisions at
√
sNN = 2760 GeV at

the LHC reach a factor of 3 higher [21, 22]. With an average charged particle

multiplicity density of 6.01 ± 0.01+0.20
−0.12 for

√
s = 7000 GeV proton collisions [23],

achieving an energy density of ∼ 1 GeV/fm3 using equation 1.4, high multiplicity

events should certainly be able to exceed the critical energy density for a QGP.
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1.4 Kinematic Variables

Here it is useful to define some commonly used variables to describe the kinematics,

or motions of particles, in particle collisions, as they will be used throughout this

work.

The energy and momentum of a particle can be expressed as a four component

vector, called ‘four-momentum’, and in a system of natural units (~ = c = 1) is

expressed as

P = (E, p) = (E, px, py, pz) . (1.6)

The four-momentum is particularly useful as it is a conserved quantity, its behaviour

is understood under Lorentz transforms, and it also provides the Lorentz invariant

mass of the particle.

From this, Lorentz invariant Mandelstam variables [1] may be constructed that

describe a collision of 2 particles with four-momenta P1 and P2 resulting in a final

state of 2 particles with four-momenta P3 and P4;

s = (P1 + P2)
2 = (P3 + P4)

2 ,

t = (P1 − P3)
2 = (P2 − P4)

2 ,

u = (P1 − P4)
2 = (P2 − P3)

2 . (1.7)

16



1.4. KINEMATIC VARIABLES

The variables are used to represent different types of scattering events; the s-channel

involves the conversion of the incident particles to an intermediate particle before

splitting into two particles, and also represents the collision energy between two

particles. The u- and t-channels represent the exchange of an intermediate particle.

In all three cases, the variable represents the squared four-momentum transferred

by the intermediate particle.

Although the vast majority of the collisions studied by the LHC experiments are

inelastic with more than 2 final state particles, the s variable is used to quantify

the collision energy between the two colliding beam bunches in the centre of mass

frame;
√
s. For collisions between nuclei, with multiple nucleons, the collision energy

is defined per nucleon, denoted
√
sNN .

From the components of momentum defined in Cartesian coordinates, as in equa-

tion 1.6, the transverse momentum is defined as the momentum of a particle per-

pendicular to the colliding beam direction:

pT =
√
p2x + p2y . (1.8)

In a collision between hadrons, at relativistic energies, the proton interacts not as

a single object, but as a dense collection of partons, from the valence quarks to

the gluons, quarks and anti-quarks (referred to as ‘sea quarks’), each carrying some

fraction of the proton’s momentum. It is impossible to know exactly the interacting

parton’s momentum as a fraction of the proton’s, and so the collision products may
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be given a longitudinal boost, effectively given extra momentum in one direction

from the beam momentum. The transverse momenta of the collision products is

unaffected by longitudinal boosts, and results from the fraction of energy lost by

the colliding particles.

Rapidity is a kinematic variable which describes, in the limit of a particle’s mass

being far less than its total energy, the particle’s angle with respect to the beam

axis using its energy and longitudinal momentum;

y =
1

2
ln
E + pz
E − pz

. (1.9)

The difference in rapidity between two particles is invariant under longitudinal

Lorentz boosts [24]. For unidentified particles whose mass is not known (essen-

tial in calculating the total energy) a preferred measure called ‘pseudo-rapidity’ is

used. It is based only on the polar angle between the particle and beam trajectories

which can be measured directly by the detector, θ;

η = − ln(tan
θ

2
) , (1.10)

and in the limit of the particle mass m→ 0, the pseudo-rapidity is equivalent to the

rapidity.

18



1.5. PROTON-PROTON COLLISIONS

1.5 Proton-Proton Collisions

This section describes the modelling and theory of interactions between protons at

relativistic energies.

1.5.1 Event Classification

Collisions between hadrons are commonly classified according to the diffractive na-

ture of the interaction. Naturally, this only applies to inelastic collisions where the

incoming hadrons break up. Diffraction in high energy collisions occurs when an in-

cident particle enters an excited state, and dissociates into a system of partons which

carry the net quantum numbers of the excited particle. This diffractive system then

goes on to hadronise into final state particles.

A single(double)-diffractive event has one(both) of the incident particles dissoci-

ating. A non-diffractive event describes inelastic collisions with a parton-parton

interaction exchanging colour charge with a large momentum transfer (more than a

few GeV/c). The resulting spatial distribution of the final state particles is heavily

influenced by the diffractive nature of the collision, as shown in Figure 1.4.

In a single-diffractive (SD) event, the intact proton continues at beam rapidity,

the other dissociates into particles found at forward rapidities. Double-diffractive

(DD) events result in particles found at large positive and negative rapidities. Non-

diffractive (ND) events have most particles produced at central rapidity, with few

19



1.5. PROTON-PROTON COLLISIONS

Y

­10 ­5 0 5 10

/d
Y

c
h

d
N

0

1

2

3

4

5

Y

­10 ­5 0 5 10

/d
Y

c
h

d
N

0

1

2

3

Y

­10 ­5 0 5 10

/d
Y

c
h

d
N

0

0.2

0.4

0.6

0.8

1

Figure 1.4: From left to right, the rapidity distributions for non-diffractive, single diffractive and

double diffractive events respectively, using Pythia (Perugia-0 tune [25]) generated data at
√
s =

7 TeV.

at forward rapidities.

Though they clearly have different structures, it is difficult to completely distinguish

between diffractive and non-diffractive events; DD and ND events can have particles

throughout the rapidity range which will trigger a minimum-bias trigger. The SD

event type may be recognised as having left one side of the detector empty.

As suggested by the shapes of the rapidity distributions in Figure 1.4, the phys-

ical processes behind diffractive and non-diffractive events can be quite different.

Ideally, the two types of events would be separated; the study of colour exchang-

ing interactions between partons would best be served with non-diffractive events.

However, given the difficulty of such a selection, the single-diffractive events can

be removed to leave a so-called ‘non-single-diffractive’ (NSD) sample. This still

leaves DD events, difficult to disentangle from ND events, but its contribution to

the inelastic cross-section is not too significant, of the order 10% [26] of the total.

Thus, historically, results have been reported for the NSD event class, as have the re-
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sults in this thesis. The inelastic event class, combining all detected events diffractive

or not, has also been used, having the advantage of smaller event level corrections;

results from this thesis are also reported for this class of events.

1.5.2 Pomeron exchange

Hadron collisions which involve a ‘soft’ interaction (low momentum exchange), such

as diffractive events, cannot be modelled by perturbative QCD due to the large

value of the strong coupling. Regge theory can successfully be used here, describing

the interaction as a scattering event with the exchange of a ‘Regge-pole’: an object

with angular momentum (or spin) J that is complex [27]. The amplitude of such

a scattering is the sum of all the possible exchange particles. These objects can be

organised according to their spin J and mass M with:

J = α0 + α(t)′M2 , (1.11)

where α0 is the Regge intercept and α′(t) is the Regge slope for a given exchange

momentum t [28]. Hadrons in a family sharing isospin and other quantum numbers

lie on a trajectory according to this relation, as shown in a Chew-Frautschi plot in

Figure 1.5. The hadron resonances occur at integer values of J for mesons.

Regge theory predicts [27] that the total interaction cross-section between hadrons
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Figure 1.5: A Chew-Frautschi plot from [28] relating angular momentum to the square of exchange

energy or mass, for a group of mesons.

is linked to the centre of mass energy as:

σtotal ∝ sα0−1 . (1.12)

For low energy, long-range interactions where the exchange particle is a meson with

Regge-intercept < 1, the total cross-section would decrease with energy. However,

the cross-section begins to rise above a certain energy, indicating the exchange of a

new trajectory of particles.

The Pomeron is a particular Regge trajectory in the Chew-Frautschi plot with a

Regge intercept of > 1, and fits with the inelastic cross-section increase with en-

ergy [28]. It is a hypothetical particle with quantum numbers of the vacuum, and

is a colour singlet state, which describes high energy scattering well. Its colour sin-
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glet state means it does not radiate quarks and gluons to give particles as does the

gluon. A Pomeron exchange between two hadrons can cause both to dissociate into

a shower of particles in the forward rapidity regions, with no particles in between

due to the Pomeron not radiating partons: this is the rapidity gap.

In the simplest form of Pomeron exchange, it can be considered as the exchange

of two gluons between partons of the scattering hadrons. As the collision energy

increases, higher order exchanges contribute with more complicated combinations

of gluons, or multiple Pomerons. However, at higher energies, especially in the

collision of hadrons with partonic structure (as opposed to lepton-hadron collisions),

the initial parton-parton interaction can be followed by further interactions that

produce particles, thus ‘obscuring’ the rapidity gap with new particles [29].

1.5.3 Simulating Proton-Proton Collisions

Simulations of proton-proton collisions are created using Monte Carlo (MC) gen-

erators, which use pseudo-random number generators to model the interaction be-

tween the partons of the colliding hadrons. The two generators used in this thesis

are Pythia [30] and Phojet [31]. The Pythia version used is Pythia6.4 Perugia-0

tune [25], referred to in this work as simply ‘Pythia’, and the Phojet version is 1.12,

referred to as simply ‘Phojet’.

Pythia uses a perturbative QCD inspired model [30] in which parton-parton inter-
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actions are described by perturbative QCD. This works well for large momentum

transfers, but as the momentum transfer approaches zero, the interaction cross-

section diverges. A cut-off pT of ∼ 2 GeV/c is used to curb these divergences by

regularising the interaction cross-section at low momentum transfers. This also con-

trols how many initial parton interactions occur. Also modelled by the generator is

string fragmentation, initial and final state parton showers and particle decays to

provide a full simulation of a hadronic collision. The Perugia-0 version is tuned to

CDF data, focusing particularly on colour re-connections during the fragmentation

of the simulated collision, allowing the QCD strings of the parton-parton interactions

to interact to minimise their potential energy [25].

Phojet uses perturbative QCD for hard parton interactions, and the Dual-Parton

Model (DPM) [32] and the Quark-Gluon String Model (QGSM) for soft interac-

tions [31]. These soft interaction models are based on the exchange of reggeons,

and allow the exchange of multiple Pomerons, equivalent to multiple parton interac-

tions, due to the inclusion of higher order terms in the expansion of QCD required

for high collision energy, soft-parton interactions. It has been shown to describe well

the data up to
√
s = 1800 GeV [33], and to LHC energies for some measurements

where other generators do not perform so well [34].
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1.6 Koba-Nielsen-Oleson scaling

Feynman suggested that the average number of particles produced in collisions rises

with the logarithm of
√
s [35]. This conclusion is reached by analysing the proba-

bility of finding a particle of type i for a given momentum and mass:

Pi(pT, pZ,m) = fi(pT,
pZ
W

)
dpZd

2pT
E

, (1.13)

where W =
√
s/2 is half the collision energy, equal to the energy of one of the

colliding particles if colliding identical beams, and fi is the structure function which

is hypothesised to be independent of W . Through its integration, outlined in [36],

the following equation can be reached:

n = 2fi(
pZ
W

= xF = 0) lnW + constants, (1.14)

where xF is known as Feynman-x and is the fraction of the colliding particle energy

carried as forward momentum by the particle, and the constants refer to other terms

which are independent of W . The scaling of the mean multiplicity with the natural

log of the collision energy is called ‘Feynman-scaling’.

Koba-Nielsen-Oleson (KNO) scaling [37] assumes Feynman-scaling, and is derived [38]

from considering q particles chosen from a group of n particles, where each particle

has some energy Eq and momentum pq:

〈n(n− 1)...(n− q + 1)〉 =

∫
f q(xF,1, pT,1; ..;xF,q, pT,q)

d3p1
E1

...
d3pq
Eq

, (1.15)
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where f q is an inclusive function that is assumed to obey Feynman-scaling. In [38],

it is shown that by making the substitution

d3pi
Ei

=
dxF,id

2pT,i√
x2F,i +

4m2
i

s

, (1.16)

where mi is the transverse mass and integrating equation 1.15 by parts gives the

following:

〈n(n− 1)...(n− q + 1)〉 ∼ f q(0, .., 0)lnq
( s

m2

)
+O

(
lnq−1

( s

m2

))
, (1.17)

where m2 is some typical mass and

f q(xF,1, ..., xF,q) =

∫
d2pT,1...d

2pT,qf
q(xF,1, pT,1; ..;xF,q, pT,q) . (1.18)

By keeping only the leading logarithm terms, this becomes

nq ∼ f q(0, .., 0)lnq
( s

m2

)
(1.19)

and so the average multiplicity is

n ∼ f 1(0)ln
( s

m2

)
. (1.20)

It is shown in [38] that this leads to a result that is uniquely defined by its moments,

and eventually yields the following:

P (n) =
1

n
Ψ
(n
n

)
, (1.21)
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where P (n) is the probability distribution of multiplicity and Ψ is an energy inde-

pendent function, such that all collisions of the same incoming particles will lie on

the same curve as a function of z = n
n

[37]. The moments that would be energy

independent for this scaling are defined as:

Cq =

∫ ∞
0

zqΨ(z)dz , (1.22)

and uniquely define the Ψ(z) which can have different forms depending on the col-

liding particles.

1.7 Negative Binomial Distribution

The Negative Binomial Distribution (NBD) has been shown [39] to fit multiplicity

distributions rather well at hadron collision energies below 540 GeV [40]. It is a

probability distribution of obtaining some random amount of successes in a series of

Bernoulli trials until a fixed number of failures occur. Its probability mass function

can be written as:

PNBD(n, k) =

(
n+ k − 1

n

)
pn(1− p)k , (1.23)

where n is the number of successes, k − 1 is the number of failures before the k’th

failure and p is the probability of a successful Bernoulli trial. The binomial coefficient
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is: (
n+ k − 1

n

)
=

(n+ k − 1)!

n!(k − 1)!
=

(n+ k − 1)(n+ k − 2)...(k)

n!
, (1.24)

which gives the number of ways to arrange n failures from a group of (n + k − 1)

trials. The number of trials in the coefficient is 1 less than the total number of trials,

as the last trial is the k-th trial resulting in failure. In the limiting case of k → ∞

the NBD becomes the Poisson distribution, and when k = 1 it becomes a geometric

distribution PNBD(n, 1) = (1−p)np. Examples of the NBD are shown in Figure 1.6.

For fitting to multiplicity distributions, it is represented in the form [40]:

P (n, n, k) =
k(k + 1)...(k + n− 1)

n!

nnkk

(n+ k)n+k
, (1.25)

where n is the average multiplicity, n is the multiplicity and k controls the shape of

the function. The k parameter is related to the probability of a successful trial by

p−1 = 1 + n/k [39].
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Figure 1.6: Examples of NBD’s with parametrisation as in equation 1.25. The left panel shows

NBDs of n with different k parameters for fixed n = 10. The left panel shows NBDs of n with

different n parameters for fixed k = 10.
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1.7.1 Interpretation of Multiplicity Distributions

The reason why the NBD should fit the lower energy multiplicity distributions in

preference to other functions is not completely understood. One interpretation,

however, is based on the recurrence relation of multiplicities; how the probability of

an event with multiplicity n relates to that of n + 1 [41]. The recurrence relation

can be written as:

g(n) = (n+ 1)
P (n+ 1)

P (n)
. (1.26)

In the case of independent emission, where the emission of a particle from the colli-

sion system is independent of other particles that may be present, the multiplicity

distribution is Poissonian:

P (n) ∝ nn

n!
, (1.27)

and the recurrence relation becomes some constant, g(n) = a.

For the NBD, the recurrence relation becomes:

g(n) = a+ bn , (1.28)

where the constants a = nk
n+k

and b = n
n+k

. In the context of this relation, different

behaviours of particle production can be considered [42]. Already, it is seen that

if b = 0, particles are produced independently of one another, but this assumes a

Poissonian multiplicity distribution. Another simple case is stimulated emission,

where the probability of the emission of a particle is enhanced by factor (n + 1) in
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the presence of n particles, so a = b and g(n) = a(n + 1). This gives P (n) = an, a

NBD with k = 1.

If partial stimulated emission is the mechanism, then additional particles are pro-

duced either independently, or by stimulated emission, relating to the a and bn terms

of the recurrence relation respectively. The relation then becomes:

g(n) = a(1 +
n

k
) , (1.29)

where k represents a number of identical ‘clusters’ with average multiplicity n
k
. So

k−1 is the average fraction of particles already present which are stimulating the

emission of new particles.

The ‘clan’ model [41] considers the recurrence relation in terms of particles produced

through cascades, where the original particle known as the ‘ancestor’ could create

new particles through cascading and change its own quantum numbers in the process.

All the particles that stem from a common ancestor are grouped as a cluster. In

terms of the recurrence relation, a particle can come from either a new 1-particle

cluster or from an already existing cluster, the a and bn terms of the recurrence

relation respectively. This can be applied to a limited interval in pseudorapidity as

well as full phase space, where a cluster will have between all and none of its particles

in the defined domain. A particle produced from a cluster defined in the domain is

then in that domain-cluster, if it is produced from a cluster outside the domain it is

considered a new 1-particle domain-cluster. Thus, the (n+ 1)-th particle can come
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from a new domain-cluster (a in recurrence relation) or from a pre-existing domain

cluster (bn in recurrence relation).

The probability P (N) of producing N clusters is assumed as Poissonian, and the

probability of a cluster producing nC particles first requires that the clan not be

empty:

PC(nC = 0) = 0 , (1.30)

where PC(nC) is the probability of the creation of a cluster with multiplicity nC ,

and then that a new particle is produced depending on the particles in the cluster

nC :

gC(nC) = (nC + 1)
PC(nC + 1)

PC(nC)
= pnC , (1.31)

where p is the probability of production and assuming nC ≥ 1. By iterating this

equation, one gets the probability of a cluster with multiplicity nC :

PC(nC) = PC(1)
pnC−1

nC
. (1.32)

Through iterations shown in the appendix of [42], the probability of a total multi-

plicity n is:

P (n) ∝ a(a+ b)...[a+ b(n− 1)]

n!
, (1.33)

where a = NPC(1), b = p and these relate to the k parameter with k = a
b
. This can

31



1.7. NEGATIVE BINOMIAL DISTRIBUTION

be rearranged to give the probability in the more familiar notation:

P (n) ∝ pn
k(k + 1)...[k + (n− 1)]

n!
=

(
n+ k − 1

n

)
pn , (1.34)

a NBD as in equation 1.25. Thus, if the multiplicity distributions of hadron collisions

are produced via the clan model, then they will continue to follow a NBD.

Above collision energies of
√
s = 540 GeV, it was found that a single NBD no longer

provided a satisfactory fit to the multiplicity distributions [40], a combination of two

NBD’s was used instead to account for the shoulder structure seen towards higher

multiplicities. These two NBD’s were interpreted as the multiplicity distributions of

soft and semi-hard events, of which only the latter had mini-jets [43], an observable

open to different technical definitions [40, 44], generally characterised by a group of

particles clustered together with transverse energy above ∼ 1 GeV. It was found

that the fraction of events with mini-jets agreed with the fraction of semi-hard

events.

The fit has five free parameters:

P (n) = αsoftP
NBD(n;nsoft; ksoft) + (1− αsoft)PNBD(n;nsemi−hard; ksemi−hard) ,

(1.35)

where αsoft is the relative contribution of soft and semi-hard events to the overall

distribution, and the two NBD’s each have two parameters. This does not distin-

guish different production mechanisms between soft and semi-hard events, as they
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are simply differently classified events. However, the soft events still exhibited KNO

scaling while semi-hard or hard events do not. It was observed that the average

multiplicity of semi-hard events is approximately twice that of soft events [43].

Another approach to addressing the change in shape of the multiplicity distribu-

tion above ISR energies is to consider multiple-particle exchanges, where multiple

parton-parton interactions occur during the collision between the two hadrons. The

contributions to the overall multiplicity distribution may come from events with a

single hard parton-pair interaction, double and possibly triple interactions also [45].

The single parton interaction seems to produce an energy independent distribution,

with the multiple parton interactions increasing with collision energy. This also has

an effect on the average transverse momentum for higher multiplicities, which is

possibly due to the occurrence of mini-jets at higher energies [46, 47].

1.8 Previous Experimental Results

1.8.1 Charged Particle Multiplicity

The CERN Intersecting Storage Ring (ISR) was the first hadron collider, producing

collisions between protons with centre of mass energy
√
s ∼ 30, 44, 53 and 62 GeV.

These were studied using the Split Field Magnet (SFM) Detector, which tracked

charged particles through its 1 T magnetic field with the then new technology of
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Multi-Wire Proportional Chambers. The multiplicity distributions observed at these

energies for NSD events are shown in Figure 1.7, and all follow KNO scaling [48].

Figure 1.7: The normalised multiplicity distributions in full phase space (left) observed at the

ISR [48] with
√
s between 30.4 and 62.2 GeV, also shown in KNO variables (right) [39] for NSD

interactions.

The Underground Area 5 (UA5) experiment observed collisions at the SPS collider

from
√
s = 200 to 900 GeV. It measured multiplicity distributions in pseudorapidity

intervals up to |ET‖ < 5.0 as well as full phase space for NSD collisions of protons

and anti-protons. The observed multiplicity distribution in full phase space at
√
s =

900 GeV was the first that could not be described by a single NBD fit, also indicating

a violation of KNO scaling, as shown in Figure 1.8.

A combination of two NBDs was successfully fitted to the UA5
√
s = 900 GeV

distribution as shown in Figure 1.9, using the form given in equation 1.35 describing

contributions to the total multiplicity from soft and semi-hard events. The average
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Figure 25: MD’s in full phase-space in pp collisions compared with the NB (Pascal) fits. The
shoulder structure is clearly visible, especially at 900 GeV [42].

64

Figure 1.8: UA5 multiplicity distributions in full phase space (from an acceptance of |η| < 5.0) for

NSD proton-anti-proton collisions at
√
s = 200, 546 and 900 GeV [41], each showing the best fit

of a NBD. The
√
s = 900 GeV data clearly show a shoulder structure above n = 60.
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multiplicity of soft events was seen to be roughly half that of semi-hard events, and

still followed KNO scaling, unlike semi-hard events [42].

0 20 40 60 80 100 120 140
10-5

10-4

10-3

10-2

0.1

n

Pn

Figure 26: MD’s in full phase-space at 900 GeV (as in the previous figure) compared with the fit
with the weighted superposition of two NB (Pascal) MD’s, which now reproduces the data perfectly

[42].

65

Figure 1.9: UA5 multiplicity distribution in full phase space (from an acceptance of |η| < 5.0) for

NSD proton-anti-proton collisions at
√
s = 900 GeV [41], shown along with the best fit of the sum

of 2 NBDs, reproducing the shoulder structure above n = 60.

The Tevatron at Fermilab collided protons with anti-protons up to
√
s = 1800 GeV,

and the E735 experiment published multiplicity measurements for NSD events in the

full phase space, these are shown in comparison to lower collision energy distributions

in KNO variables from UA5 and ISR in Figure 1.10. The onset of KNO scaling

violation is clearly visible as the collision energy increases.
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Figure 7. Multiplicity distributions of NSD events in full phase space in multiplicity

variables (left panel) and in KNO variables (right panel). Data points from [10, 15, 14,

53].
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Figure 8. dNch/dη at different
√

s. Data points from [13, 78, 35, 15, 84, 83].

In publications two different approaches are found to obtain average values in a limited

η-range. The first uses a normalization to all events having at least one track in

the considered phase space. The second approach uses a normalization to the total

considered cross section (inelastic or NSD) including events without any particle in

the considered range (data shown here). While the latter is the more evident physical

Figure 1.10: The violation of KNO scaling for increasing collision energy, demonstrated by the

full phase space multiplicity distributions from E735, UA5 and ISR shown in KNO variables. The

filled points from the ISR fall on top of each other, following KNO scaling. Empty points at higher

energies lie on separate trajectories, violating the predicted scaling. Figure taken from [39]. Data

from [48], [49], [50] and [45]

The Collider Detector experiment at Fermilab (CDF) observed proton-anti-proton

collisions with
√
s = 600 GeV and 1800 GeV. The data were separated into soft

and hard events by classifying events with a jet cluster with transverse energy above

1.1 GeV as hard, and those without as soft [44]. The multiplicity distributions for

these inelastic event classes in KNO variables is shown in Figure 1.11. The sum

of the soft and hard events, the minimum bias event selection, shows KNO scaling

within errors for pseudorapidity interval of ±1, as well as the sub-group of soft

events, between the two collision energies. The hard events, those deemed to have

mini-jets present, show a clear violation of KNO scaling between the two energies.

It was theorised that the soft and semi-hard event types could be interpreted as

single and double parton interactions [47].
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Figure 1.11: Multiplicity distributions from CDF [44] in KNO variables for different event selec-

tions at
√
s = 630 GeV and 1800 GeV. The top panel includes all minimum bias data, the bottom

left comprises soft events and the bottom right comprises hard events.
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The ALICE [51] and CMS [52] experiments have both published multiplicity dis-

tributions for proton-proton collisions at
√
s = 900, 2360 and 7000 GeV for NSD

events [23, 53, 54]. ALICE also selects all inelastic events, and inelastic events with

at least 1 track in the pseudorapidity selection. The distributions from both in

comparable pseudorapidity intervals are shown in Figure 1.12, indicating excellent

agreement between the two experiments. As the CMS detector is designed for high

luminosity data taking, it has collected enough data to populate the exponentially

reducing tail of the multiplicity distribution, further than ALICE has currently pub-

lished.
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Figure 1.12: Published multiplicity distributions from ALICE [23, 53] and CMS [54], for proton-

proton collision energies of
√
s = 0.9, 2.36 and 7 TeV, and pseudorapidity range of |η| < 0.5 (|η| <

1.0) shown in the left (right) panel. Note that for
√
s = 7 TeV and |η| < 1.0, the ALICE distribution

is from inelastic events rather than NSD, but this only affects the first few low multiplicity bins.

A comparison of multiplicity distributions at
√
s = 900 and 7000 GeV for a small

and large pseudorapidity interval is shown by CMS in Figure 1.13. It clearly shows a

strong violation of KNO scaling in the |η| < 2.4 interval, yet for |η| < 0.5 the scaling
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holds. This is interpreted as the increasing contribution of multiple sub-processes

of differing hardness in elastic collisions between hadrons [54].

8.2 Violation of KNO scaling 11

8.2 Violation of KNO scaling

The multiplicity distributions are shown in KNO form in Fig. 5 for a large pseudorapidity
interval of |η| < 2.4, where we observe a strong violation of KNO scaling between

√
s = 0.9 TeV

and 7 TeV, and for a small pseudorapidity interval of |η| < 0.5, where KNO scaling holds.
Scaling is a characteristic property of the multiplicity distribution in cascade processes of a
single jet with self-similar branchings and fixed coupling constant [62–69].
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Figure 5: The charged hadron multiplicity distributions in KNO form at
√

s = 0.9 and 7 TeV in
two pseudorapidity intervals, (a) |η| < 2.4 and (b) |η| < 0.5.

The validity of KNO scaling is shown more quantitatively in Fig. 6 by the normalised order-q
moments Cq of the multiplicity distribution, complemented with measurements at lower ener-
gies [70–72]. For |η| < 2.4 the values of Cq increase linearly with log s, while for |η| < 0.5 they
remain constant up to q = 4 over the full centre-of-mass energy range, as illustrated by the fits
in Fig. 6.

Multiplicity distributions for e+e− annihilations up to the highest LEP energies show clear
evidence for multiplicity scaling, both in small ranges (∆η < 0.5), in single hemispheres, and
in full phase-space. However, at LEP energies, scaling is broken for intermediate-size ranges
where, besides two-jet events, multi-jet events contribute most prominently [73–77].

For hadron-hadron collisions, approximate KNO scaling holds up to ISR energies [78, 79], but
clear scaling violations become manifest above

√
s ≈ 200 GeV both for the multiplicity distri-

butions in full phase space and in central pseudorapidity ranges [59, 70, 80, 81]. In pp colli-
sions, and for large rapidity ranges, the UA5 experiment was the first to observe a larger than
expected high-multiplicity tail and a change of slope [59, 72], which was interpreted as evi-
dence for a multi-component structure of the final states [34, 60, 82]. Our observation of strong
KNO scaling violations at

√
s = 7 TeV, as well as a change of slope in Pn, confirm these earlier

measurements.

All these observations, together with the sizable growth with energy of the non-diffractive
inelastic cross section, point to the increasing importance of multiple hard, semi-hard, and soft
partonic subprocesses in high energy hadron-hadron inelastic collisions [6, 32, 34, 59, 83, 84].

Figure 1.13: Multiplicity distributions in KNO variables from CMS [54] at
√
s = 0.9 and 7 TeV in

the pseudorapidity interval |η| < 2.4 in the left panel (a) and |η| < 0.5 in the right (b).

Figure 1.14 shows the pseudorapidity density in the central region for NSD and

inelastic proton-proton collisions as a function of centre of mass energy. The NSD

data points are from the range |η| < 0.5, the inelastic points from |η| < 1.0 [23]. The

events of type INEL>0 are inelastic events with at least 1 track in |η| < 1.0, so the

pseudorapidity density is higher due to the exclusion of events with 0 multiplicity

(but have tracks outside this interval).

The multiplicity distribution in the range |η| < 0.5 can provide the pseudorapidity

density through its average value, due to the plateau structure of the pseudorapidity

density in the central region.
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there is a large spread of values between different models:
PHOJET is the lowest and PYTHIA tune Perugia-0 the high-
est.

Fig. 2 Charged-particle pseudorapidity density in the central pseudo-
rapidity region |η| < 0.5 for inelastic and non-single-diffractive colli-
sions [4, 16–25], and in |η| < 1 for inelastic collisions with at least
one charged particle in that region (INEL > 0|η|<1), as a function of
the centre-of-mass energy. The lines indicate the fit using a power-law
dependence on energy. Note that data points at the same energy have
been slightly shifted horizontally for visibility

6 Conclusion

We have presented measurements of the pseudorapidity den-
sity and multiplicity distributions of primary charged par-
ticles produced in proton–proton collisions at the LHC, at
a centre-of-mass energy

√
s = 7 TeV. The measured value

of the pseudorapidity density at this energy is significantly
higher than that obtained from current models, except for
PYTHIA tune ATLAS-CSC. The increase of the pseudora-
pidity density with increasing centre-of-mass energies is sig-
nificantly higher than that obtained with any of the models
and tunes used in this study.

The shape of our measured multiplicity distribution is not
reproduced by any of the event generators considered. The
discrepancy does not appear to be concentrated in a single
region of the distribution, and varies with the model.
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Fig. 3 Measured multiplicity distributions in |η| < 1 for the INEL >
0|η|<1 event class. The error bars for data points represent statistical
uncertainties, the shaded areas represent systematic uncertainties. Left:
The data at the three energies are shown with the NBD fits (lines).
Note that for the 2.36 and 7 TeV data the distributions have been
scaled for clarity by the factors indicated. Right: The data at 7 TeV

are compared to models: PHOJET (solid line), PYTHIA tunes D6T
(dashed line), ATLAS-CSC (dotted line) and Perugia-0 (dash-dotted
line). In the lower part, the ratios between the measured values and
model calculations are shown with the same convention. The shaded
area represents the combined statistical and systematic uncertainties

Figure 1.14: Pseudorapidity density in the range |η| < 0.5 for NSD events, and in the range

|η| < 1.0 for inelastic events, as a function of the collision energy [23]. The lines show power law

fits to the data. Data points from [54, 55, 56, 57, 58, 59, 60, 61] .

1.8.2 Mean Transverse Momentum

Early measurements of the mean transverse momentum with respect to multiplic-

ity for hadron collisions showed a similar structure above ISR energies, sometimes

referred to as the ‘ledge’ effect; the rise-plateau-rise shape of the correlation shown

in [62].

Figure 1.15 shows the mean transverse momentum published by ALICE for inelastic

events in the pseudorapidity interval |η| < 0.8 at the proton-proton collisions energy

√
s = 900 GeV [63]. The mean pT for each multiplicity bin is extracted from a

fit to the pT spectrum for all charged particles. The measurement was made with

two minimum pT thresholds of 0.15 GeV/c and 0.5 GeV/c, and compared to various

tunes of the Pythia MC and to the Phojet MC generators revealing the failure to

reproduce the observed shapes for most of them. There is clearly a change in the
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slope with increasing multiplicity, but further structure cannot be discerned.

ALICE Collaboration / Physics Letters B 693 (2010) 53–68 61

Fig. 7. The average transverse momentum of charged particles in INEL pp events at
√
s = 900 GeV for three different pT ranges as a function of nacc (left panel) and as a

function of nch (right panel). The error bars and shaded areas indicate the statistical and systematic errors, respectively.

Fig. 8. The average transverse momentum of charged particles for 0.5 < pT < 4 GeV/c (left panel) and 0.15 < pT < 4 GeV/c (right panel) in INEL pp events at
√
s = 900 GeV

as a function of nch in comparison to models. The error bars and the shaded area indicate the statistical and systematic errors of the data, respectively. In the lower panels,
the ratio Monte Carlo over data is shown. The shaded areas indicate the statistical and systematic uncertainty of the data, added in quadrature.

The average transverse momentum 〈pT 〉 as a function of the multiplicity of accepted particles (nacc) in INEL pp collisions at
√
s =

900 GeV is shown in the left panel of Fig. 7. For all three selected pT ranges a significant increase of 〈pT 〉 with multiplicity is observed.
Most significantly for 0.5 < pT < 4 GeV/c, the slope changes at intermediate multiplicities.

In the right panel of Fig. 7 the same data is shown as a function of nch after application of the weighting procedure (Eq. (3)). In
comparison to model calculations, good agreement with the data for 0.5 < pT < 4 GeV/c is found only for the PYTHIA Perugia0 tune
(Fig. 8, left panel). In a wider pseudorapidity interval (|η| < 2.5), similar agreement of the data with Perugia0 was reported by ATLAS [19].
For 0.15 < pT < 4 GeV/c, Perugia0 and PHOJET are the closest to the data, as shown in the right panel of Fig. 8, however, none of the
models gives a good description of the entire measurements.

Figure 1.15: The ALICE published data of mean pT versus charged multiplicity for inelastic proton-

proton collisions at
√
s = 900 GeV, with minimum pT of 0.15 GeV/c (left panel) and 0.5 GeV/c

(right panel), compared to various MC generators [63].

The CDF Collaboration, at the Tevatron collider, presented a measurement of mean

pT versus multiplicity in the pseudorapidity interval |η| < 1.0 for tracks with pT

above 0.4 GeV/c [44], comparing two sub-samples of the minimum bias data deemed

‘hard’ and ‘soft’, as shown in Figure 1.16. The soft sample is seen to have a collision

energy invariant correlation of mean pT with charged multiplicity, where as the hard

sample shows a generally larger mean pT for the higher collision energy. The shape

of the minimum bias correlation shows the same change in slope as seen in lower

energy measurements, with hints of a rise in the tail of the distribution, but as

the statistics run out here, another change in the slope cannot be concluded. It is
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also worth noting that in the separate data samples, the first change in slope of the

correlation is present for the soft events, whereas the hard events show a more linear

shape.

A comparison of soft and hard events has been published also by ALICE [64] for

√
s = 900 and 7000 GeV, for charged tracks in |η| < 0.8 and with pT > 0.5 GeV/c,

shown in Figure 1.17, although there is no comparison between collision energies

for hard and soft events, and different minimum pT thresholds are not considered.

The hard and soft events are distinguished by the presence of a charged track with

pT > 2 GeV/c, which suggests a hard parton interaction during the collision. The

results are compared to various MC generator tunes of Pythia. The rise of mean pT

predicted by many of the MC generators at high multiplicity for
√
s = 7000 GeV is

not reproduced in the minimum bias data. After the initial change in slope of the

correlation at low multiplicity, the slope is unchanged up to the highest presented

multiplicity. The mean pT increases with multiplicity, confirming that this trend

seen at lower energies continues to
√
s = 7000 GeV.

The mean pT for NSD or inelastic proton-proton events for various collision energies

is shown in Figure 1.18, taken from the ALICE publication [63].
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Figure 1.16: Average transverse momentum per event as a function of multiplicity from CDF [44]

for different event selections at
√
s = 630 GeV and 1800 GeV. The top panel includes all minimum

bias data, the bottom left comprises soft events and the bottom right comprises hard events.
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10 The ALICE Collaboration
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Fig. 7: Mean transverse momentum versus multiplicity. The ALICE data are compared with five models: PHO-
JET, PYTHIA6 (tunes: ATLAS-CSC, PERUGIA-0 and PERUGIA-2011) and PYTHIA8. Results at

√
s= 0.9 and

7 TeV are shown in the top and bottom rows, respectively. Different event classes are presented: (left) “soft”,
(middle) “hard” and (right) “all”. The gray lines indicate the systematic uncertainty on data and the horizontal
error bars indicate the bin widths.

5.3 ST spectra in multiplicity intervals

To disentangle the ambiguities between pT, ST and multiplicity, the normalized transverse sphericity
spectra (the probability of having events of different transverse sphericity in a given multiplicity interval)
are computed at 7 TeV for four different intervals of multiplicity: Nch = 3–9, 10–19, 20–29 and above
30. These are shown in Fig. 8 along with their ratios to each MC calculation. In the first multiplicity bin
(Nch = 3–9), the agreement between data and MC is generally good, but in the second bin (Nch = 10–19)
the ratio data to MC is systematically lower for ST ≤ 0.4 except for PERUGIA-2011. In the last bin of
multiplicity the overproduction of back-to-back jets (in the azimuth) reaches a factor of 3, and there is
an underestimation of isotropic events by a factor 2. As in previous cases, the best description is done by
PERUGIA-2011.

To obtain information about the interplay between multiplicity and 〈pT〉 through the event shapes, we also
investigated the 〈pT〉 as a function of 〈ST〉 in intervals of multiplicity. The study is presented using MC
generators at

√
s = 7 TeV, but the conclusion also holds at the other two energies. Figure 9 shows 〈pT〉

Figure 1.17: Mean pT versus charged multiplicity for inelastic proton-proton collisions at
√
s =

900 GeV (top row) and
√
s = 7000 GeV (bottom row) [64]. The events are divided into soft and

hard events, left and middle panels respectively, with the correlation for all events shown in the

right hand panels.
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Figure 1.18: The mean pT per event for NSD and inelastic proton-proton collisions from various

hadron collider experiments as a function of collision energy. Figure is taken from [63]. Data

points are from [61, 65, 66, 67, 68, 69] .
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1.9 Summary

The theory of QCD predicts the state of QGP in high energy density environments

such as those produced in heavy-ion collisions, and possibly a minority of very high

multiplicity proton-proton collisions. Measurements of the QGP show it is a short-

lived state of dense, strongly interacting matter in thermal equilibrium, that rapidly

expands and cools. Proton-proton collisions provide a vital baseline with which to

compare to and understand heavy-ion collisions, and in themselves provide an insight

to the fascinating physics of parton interactions and particle production through

measurements of global observables, such as multiplicity and average transverse

momentum per event.
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CHAPTER 2

THE ALICE EXPERIMENT AT THE

LHC

2.1 The LHC

The Large Hadron Collider [70] is the flagship accelerator at the CERN laboratory

in Switzerland. It is a superconducting synchrotron designed to accelerate protons

and lead ions, bringing them to collision in the centre of detectors along its 26.7 km

circumference.
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At 45− 170 m below the ground, in the tunnels excavated for the LEP accelerator,

the LHC provides collisions for four main experiments. There are two high lumi-

nosity experiments, ATLAS [71] and CMS [52], looking for rare events, a beauty

physics experiment, LHCb [72], and a heavy ion experiment, ALICE [51]. These

four are housed in caverns at intersection points along the LHC, as shown in fig-

ure 2.1. In addition, smaller experiments share the interaction points of the large

detectors to study cross-sections [73], forward particle production [74] and search

for exotic particles [75].

Figure 2.1: Schematic layout of the LHC and its four main experiments [70]

The protons, to be fed into the LHC, are created initially by stripping hydrogen

atoms of their electrons. These protons are then injected from the LINAC2 (linear

accelerator) into the Proton Synchrotron Booster which accelerates the protons to

an energy of 1.4 GeV before injecting them into the Proton Synchrotron (PS). The
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PS ring accelerates protons up to 25 GeV, at which point they are fed into the SPS,

which accelerates protons to 450 GeV. Then they can be fed in either direction into

the LHC, where they are acceletated up to 4 TeV. Figure 2.2 shows the layout of

the injection complex.

Figure 2.2: The various stages of acceleration of both protons and ions on their way to injection

into the LHC [76]

The protons travel inside the LHC in bunches separated by at least 25 ns in time,

which defines one ‘bucket’, and the beam can be up to a millimetre wide, it is

narrowed by focusing magnets around the collision points to achieve high lumi-

nosities. The LHC can circulate up to 2808 bunches of protons at the same time.

The collision rate is the product of the luminosity and the collision cross-section,

with the luminosity describing the particle flux per second of both beams per unit

area and the cross-section describing the likelihood of an interaction between two

particles. The design luminosity for proton-proton collisions is L = 1034 cm−2s−1,
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and the proton-proton collision cross-section, at 7 TeV, for inelastic collisions is

σinel = (69.4 ± 7.3) mb [77], where 1b = 10−28 m2, giving a possible collision rate

of 700 MHz. The highest achieved luminosity with the LHC machine so far is

7.7× 1033 cm−2 s−1 as of 2012 [78]. The normal proton-proton luminosity delivered

to ALICE is of the order 1030 cm−2s−1, giving a collision rate of the order 105 Hz.

For the heavy-ion programmes, carried out at the end of 2010 and end of 2011,

purified lead was heated to 500 ◦C to create lead vapour. This is ionised and mass

separated to obtain Pb27+. The ions were then accelerated and ionised further in

stages before being fully ionised to become Pb82+ and reaching 177 GeV/nucleon

inside the SPS. From here, they are injected into and accelerated by the LHC to 1.38

TeV/nucleon, corresponding to a collision energy of
√
sNN = 2.76 TeV/nucleon, or a

total centre of mass energy of 574 TeV. Data were collected at an average luminosity

of 5×1023 cm−2s−1 [79], with roughly 107 ions per bunch. Though the lead-ion runs

are primarly intended for the ALICE experiment, the ATLAS and CMS experiments

also recorded heavy-ion data at similar luminosities.

2.2 The ALICE detector

The sub-detectors which make up the ALICE experiment, as shown in Figure 2.3,

may be grouped in terms of their function. There are tracking detectors which collect

information about the path of charged particles, and can also be used to pinpoint
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the interaction vertex. There are detectors which measure the rate of energy loss

of particles, dE/dx, which is used to identify a particle’s species, and those that

use the time of flight for particle identification. Then, there is the electromagnetic

calorimetry that detects and measures the energy of electrons and photons. The

Muon Spectrometer tracks muons which are used to measure the production of

heavy quark resonances via their dimuon decay products. The detectors in forward

positions, as well as providing detector coverage at small angles to the beam line,

are also used for global event characteristics and triggering the recording of an

event. The pseudorapidity coverage of some of the ALICE sub-detectors is shown

in Figure 2.4. Some detectors fall into more than one of the above categories, their

information is used for multiple purposes.

The central barrel is contained inside the solenoid magnet of ALICE which produces

a uniform magnetic field of 0.5 T over all the detectors inside it. This changes

the trajectory of charged particles inside the magnet in the direction orthogonal

to the beam line. In this field, particles with a transverse momenta of less than

50 MeV/c, emanating from the interaction point inside the beam pipe, will not

reach the innermost layer of detectors. The solenoid magnet, a distinctive red in

colour, is 15.8 m in diameter and 14.1 m in length, with a steel return yoke.

The forward muon spectrometer consists of a dipole magnet providing a 0.67 T

magnetic field, 7 m from the interaction point. It is 5 m long, 9 m tall and made of

28 steel modules.
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Figure 2.3: The ALICE detector [80]

53



2.2. THE ALICE DETECTOR

Figure 2.4: The Pseudorapidity coverage of some of the ALICE detectors [51]

The coordinate system in ALICE is referred to throughout this chapter to describe

the layout of the detector systems. The z coordinate follows the beam line of the

LHC, with z = 0 at the centre of the detector, also known as the interaction point,

or nominal interaction point. The x axis points towards the centre of the LHC

ring, and the y axis points straight up. Each side of the detector along the z axis

is noted as the ‘A’ and ‘C’ side, indicating beams incoming from the LHC in an

anti-clockwise and clockwise direction respectively. The muon spectrometer is on

the ‘C’ side of the experiment.
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2.2.1 Inner Tracking System

The ITS, or Inner-Tracking System [81], is a six-layer silicon vertex detector posi-

tioned in close proximity to the interaction point to provide high resolution vertex

reconstruction (better than 100 µm) [82], in order to track and identify particles

and reconstruct secondary vertices such as those from decays of charmed hadrons.

The detector also improves the momentum and angle resolution of particles tracked

by the Time Projection Chamber (TPC) [83], and reconstructs particles that pass

through inter-sector gaps, or “dead space”, in the TPC. The layout of the three

pairs of detector layers is shown in Figure 2.5.

Figure 2.5: Schematic layout of the six layers of the ITS [82]

The ITS has six layers of detectors; two Silicon Pixel Detector layers, two Silicon

Drift Detector layers and finally two Silicon Strip Detector layers. It provides rapid-

ity coverage of |η| < 0.9 for all vertices located within the length of the interaction

region, designed to include at least all the vertices with a z position ±1σ around

the nominal interaction point of z = 0. They are located between 4 cm and 44 cm
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from the middle of the beam line, optimally positioned to be as close to the beam

line and to match tracks found by the ITS to the tracks found by the TPC.

Silicon Pixel Detector (SPD)

The SPD [81] is designed to determine the primary vertex position and impact pa-

rameter of secondary tracks from weak decays of charmed hadrons. It can cope with

a particle density of 80 cm−2 [82] in the inner layer, though in reality is subjected to

up to 16 cm−2 [79]. It uses pixels to take measurements of charged particle multi-

plicities. Short tracks, or “tracklets”, can be constructed from two hits in each layer

of pixels.

The two layers of the SPD have around 107 channels with one-bit information,

corresponding to an individual pixel and whether it has been hit or not. Each pixel

is a silicon diode which is reverse biased to increase the depletion region across the

diode junction, and to obstruct the flow of current with high resistance. Ionizing

radiation, in this case a charged particle, will activate a pixel by creating electron-

hole pairs in the depleted zone which are attracted to either side of the junction and

collected by electrodes to generate a signal. The layers present a small thickness to

traversing particles, around 1% of a radiation length, in the active regions, allowing

the pT cut-off for low momentum particle measurements to be 100 MeV/c.

The pixels are arranged on chips in cells with 8192 pixels each. Each pixel is 50µm

in rφ and 425µm in z. Each chip has an active area of 12.8 by 70.7 mm2. There are
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1200 chips in total, 400 on the inner layer and 800 on the outer layer. To provide a

fast minimum-bias interaction trigger, each chip outputs whether it has had a pixel

hit or not, instead of querying all 107 pixels.

Silicon Drift Detector (SDD)

The two intermediate layers of the ITS are occupied by the Silicon Drift Detectors,

(SDD) [81], another two-dimensional readout detector to cope with the high particle

density even at the radii of these two layers (14.9 cm and 23.8 cm from the beam

axis). The SDD has an active area of 1.31 m2, with modules arranged alternately

closer and further from its mounting frame to create overlaps of the active areas.

Each detector unit is made of a high purity silicon bulk of 70.2× 75.3 mm2 in area,

300µm thick, with cathodes laid along the top layer. The electric field generated

by these cathodes creates a drift region that directs electrons to the outer edges of

the cell, where anodes collect the charge created by the charged particle ionising

the silicon. There are 84 and 176 of these modules in the inner and outer layer

respectively.

Like gaseous detectors, the SDD exploits the drift time, up to 5.4µs, of the deposited

charge from the traversing particles to localise the impact point in one dimension,

enhancing resolution and multi-track capability. The z coordinate of the hit is found

from the time taken for the electrons to reach the anode collection wires. The rφ

coordinate is found from which anode wire collects the charge, as there are many
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anode wires at the edge of each detector cell.

Silicon Strip Detector (SSD)

The SSD [81] occupies the outer two layers of the ITS at radii of 38.1 cm and

43.1 cm from the beam axis. Both layers are of double-sided silicon strips, and are

constructed such that the 768 strips on one side of the layer overlap the 768 of the

other at an angle of 35 mrad. Therefore, a hit in two strips gives the position of

the hit. They are crucial for connecting tracks from the ITS to the TPC as well as

providing dE/dx information for identifying low momentum particles. It is capable

of resolutions of 20µm in rφ and 800µm in z. There is a compromise made on

the z resolution to give better resolution in rφ, which is the direction that particles

are bent by the magnetic field of the solenoid, so as to increase the transverse

momentum resolution. Combining this information with those from other layers in

the ITS provides the z information.

2.2.2 Time Projection Chamber (TPC)

The Time Projection Chamber, or TPC [83], is the biggest detector of its kind ever

built, with a gas volume of ∼ 85 m3 and dimensions of 5 m in length, an inner radius

of 87 cm and outer radius of 250 cm; giving a rapidity coverage of |η| < 1.5. It is the

primary tracking detector in the central region of the ALICE experiment, providing

track finding, charged particle momentum measurement, particle identification and
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two-track separation for particles with pT ≤ 100 GeV/c and |η| < 0.9.

The cylindrical gaseous volume is split into two halves along the beam direction by

a high-voltage electrode with a potential of 100 kV positioned at the axial centre

aligned to the nominal interaction point, z = 0. As shown in Figure 2.6 this gives

two drift regions of 2.5 m with a highly uniform electrostatic field of 400 V/cm. This

is achieved by encasing the whole drift region in a field cage with electrode strips

at intervals around the drift region of decreasing voltage from the central cathode

towards the read out plates of the end-caps.

Figure 2.6: Diagram of the TPC field cage, measuring 5 m in length and 2.5 m in radius [83]

The drift gas, a mixture of neon, carbon dioxide and nitrogen (all low-Z gases

presenting a small radiation length) at ambient pressure, is optimised to have low

diffusion and scattering for electrons while keeping ion mobility high. The maximum

drift length is 2.5 m, and the maximum drift time of electrons in this mixture is 92µs,

defining the time during which the TPC is sensitive. Another consideration is to

keep effects from ageing minimal, which is minimised by the chosen gas mixture
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providing rapid ion evacuation, and to minimise the build up of space charge, a

collection of charge grouped in one area of the TPC which takes a long time to

dissipate. Space charge is more of a problem for lead-lead collisions rather than

proton-proton due to the difference in multiplicity, it is negligible in the latter case,

but even at the largest multiplicities it will only affect the tracking by a few mm,

correctable after reconstruction.

The end-plates of the TPC, which handle the readout, are segmented into 18 trape-

zoidal sectors, each segmented radially in two chambers with varying pad sizes op-

timized for the radial track density, totalling about 560,000 pads. The technology

of the read out pads is Multi-Wire Proportional Chambers (MWPC), recording the

charge deposited by the drift electrons created from the ionization of the drift gas

by the charged particle.

When a charged particle traverses the TPC active area, the gas mixture is ionised,

leaving a memory of the path of the particle with a trail of electrons and ions. The

electrons drift to the readout plates at the end-caps of the TPC, and the ions drift

to the high voltage cathode in the centre of the TPC due to the electrostatic field.

The time of arrival of the signal clusters will give the z position of the hit, and the

position of the signal clusters give the (rφ) of the hit. These clusters are fitted to

reconstruct tracks that have their momentum calculated by the curvature of their

path due to the magnetic field. The space-point resolution was found to be around

0.8 mm along the z direction after 2.5 m drift.
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Figure 2.7 shows the track finding efficiency as a function of transverse momentum

for just the TPC, and the TPC and ITS together. The efficiency for the TPC and

ITS+TPC goes to 90% at very high momenta, a value that is determined by the TPC

dead space, that is space which holds support structures or cables. Approximately

10% in azimuth of the TPC is considered dead space, or non-sensitive, as it contains

the boundaries between readout pads along with service pipes and cables.

Figure 2.7: Physical track-finding efficiency for just the TPC, and the TPC and ITS combined, as

a function of pT [51] (modified)

2.2.3 Transition Radiation Detector (TRD)

The TRD [51] in ALICE is designed to identify electrons with momenta above

1 GeV/c, taking over from the TPC providing identification below such momenta,

as well as providing a high momentum trigger to increase the number of recorded

heavy quarkonia such as the J/ψ and Υ. Particles first pass through the radiator,
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then into the drift chamber filled with a Xe/CO2 mixture and an accelerating field

before reaching the readout pads. The radiator provides a boundary of different

dielectric constants for an incident particle to traverse, thus experiencing different

electric fields, and if it has a high enough Lorentz factor it will emit transition

radiation. The transition radiation of electrons passing through the radiator can

be used with the specific energy loss in the drift chamber to reject pions, achieving

the desired pion rejection factor of 100 at momenta of 2 GeV/c (that is, only 1% of

these pions are erroneously identified as electrons).

A single TRD module is typically 107 mm in depth, and arranged in five stacks of six

as a super module. The layering of these cells cumulatively increases the probability

of inducing transition radiation from incident particles. The TRD is designed to

have 18 of these super modules, arranged outside the TPC with a full azimuthal

coverage, and pseudorapidity coverage of |η| < 0.9. At the time of recording the

data used in this thesis, 7 modules were installed and operational.

2.2.4 Time of Flight (TOF) Detector

The TOF [51] identifies charged particles using a time measurement with tracking

and momentum information from the inner detectors to assign the particle a mass

value. Providing particle identification for pions and kaons with momenta below

2.5 GeV/c and protons up to 4 GeV/c, the TOF can provide π/K and K/p sepa-

ration better than 3σ. Designed to operate efficiently with low occupancy during
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high multiplicity heavy ion collisions, the TOF comprises 105 independent channels,

spread over the large area of the full azimuth surrounding the TRD. The desired

particle separation requires a timing resolution of at least 100 ps, provided by the

Multi-gap Resistive-Plate Chamber (MRPC) design of the TOF. These chambers

are made up of two sets of stacked glass with five gas gaps of a quarter millimetre,

with a high voltage applied to the stack giving a uniform electric field. Ionizing

particles crossing the gas gaps cause an electron avalanche, due to the applied high

voltage, and are collected by the electrodes either side of groups of five gas gaps.

Given the thin profile of the chambers (see figure 2.3), there is no drift time associ-

ated with avalanche electrons, providing a fast and clear peak well separated from

zero time. After testing, the TOF was found to give a resolution better than 50 ps

and almost 100% efficiency [84].

2.2.5 Electromagnetric Calorimeter (EMCal)

The EMCal [51] is a lead scintillator sampling calorimeter situated on the inside of

the ALICE magnet at a radius of 4.5 m, outside the TRD. Constrained by spatial

and weight limitations inside the magnet, it covers 107◦ in azimuth and |η| < 0.7 in

pseudorapidity. The addition of this calorimeter to the detector array, especially the

ability to measure the energy of neutral particles, allows studies of jet physics and

efficient triggering on hard jets and photons in all LHC running modes including lead

ion collisions. This detector is focussed towards high transverse momenta particles
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and jets, so does not require more than modest granularity and resolution.

2.2.6 High Momentum Particle Identification Detector (HMPID)

The HMPID [51] extends the particle identification range in momentum for pions

and kaons up to 3 GeV/c and protons up to 5 GeV/c for individual tracks. With it,

inclusive particle ratios and transverse momentum spectra can be measured for these

particles. Exploiting Cherenkov radiation created from the particle passing through

a 15 mm radiator and detected by a Multi-Wire Proportional Chamber (MWPC),

the Cherenkov angle can be reconstructed to an accuracy of about 3 mrad per track,

assuming 50 particles/m2.

2.2.7 Photon Spectrometer (PHOS)

The PHOS [51] is a high resolution electromagnetic spectrometer designed to probe

the initial phase of nucleus-nucleus collisions with direct photons, as well as jet

quenching through high momenta pion and jet correlations. The high resolution

comes from the dense lead-tungstate scintillator crystal that acts as a calorimeter of

20X0 and high photo-electron yield. The discrimination between charged hadrons

and photons is made with the Charged Particle Veto layer that lies in front of each

calorimeter module. The PHOS is made up of 5 detection modules, in a single

arm layout that sits underneath the central barrel at a radius of 460 cm from the
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interaction point. It covers the pseudorapidity range |η| < 0.12 and an azimuthal

arc of 100◦.

2.2.8 Muon Spectrometer

The Muon Spectrometer [51] arm detects muons in the pseudorapidity range of

−4.0 < η < −2.5, or polar angle of 171◦−178◦, allowing measurements of quarkonia

masses through the dimuon decay channel of quarkonia such as the J/ψ and Υ

species. It allows also the study of open heavy flavour hadron production, as many

muons are produced from the semi-leptonic decay of these states. A passive absorber

made from concrete and carbon gives shielding to the spectrometer from hadrons

and photons from the interaction vertex, thus filtering out background particles

giving a cleaner sample of muons. After the absorber, a set of tracking chambers

with a magnet around the middle provides tracking of muons along with a measure

of their momenta. These tracking chambers are highly granular to cope with the

large flux of muons found in heavy ion collisions. An iron wall 1.2 m thick sits after

the tracking chambers, and filters out muons with less than 4 GeV/c of momentum

so that the trigger chambers beyond can provide trigger signals picking out heavy

quark resonance decays.
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2.2.9 Zero Degree Calorimeters (ZDC)

The ZDC [51] measures the energy of particles close to the beam line, at almost

0◦. This information can be used to determine, in lead-lead collisions, how many

nucleons left the collision intact, and therefore its impact parameter. They are 116 m

away from the interaction point, and made of two detector types, one to measure

neutrons which is placed between the beam pipes, and the other to measure protons

that are deflected by the magnetic fields to the side of the beam pipe. They can also

give position information about the spectator nucleons, giving a measurement of the

reaction plane of the collision. The calorimeters are sheets of tungsten alloy or brass,

for neutrons or protons respectively. Quartz fibres are interspersed between these

sheets, and give off Cherenkov light when the particle showers from the hadrons

hitting the metal sheets pass through them. This light travels along the fibres to

be amplified into a measurable signal proportional to the energy of the incoming

hadrons.

2.2.10 Photon Multiplicity Detector (PMD)

The PMD [85] is a highly granular photon detector covering the phase space of

2.3 < η < 3.5, situated 361.5 cm from the interaction vertex, opposite the muon

spectrometer. It uses two planes of proportional gas counters either side of a lead

converter to measure the shower of photons from the interaction vertex, using the

first detector plane as a veto to discriminate against charged particles. It provides
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measurements of the photon multiplicity and electromagnetic energy distribution.

2.2.11 Forward Multiplicity Detector (FMD)

The FMD [51] measures the charged particle multiplicity in the forward region from

the interaction vertex, a polar angle range of 0.75◦ − 21◦ or 1.7 < |η| < 5.1 in

pseudorapidity. It is made of 5 discs with silicon semiconductor detectors placed

at intervals along the beam pipe around the interaction vertex to provide the wide

coverage in small angles around the beam. There are 3 discs on the A-side, a pair

of inner and outer discs roughly 80 cm from the interaction point, and another disc

320 cm from it. On the C-side, there is an inner and outer disc 70 cm from the

interaction point.

2.2.12 V0

The V0 [51] scintillator counters, located either side of the interaction vertex at

340 cm on the opposite side of the muon spectrometer for V0A and 90 cm on the

same side for V0C, fulfils many useful roles in ALICE for both proton-proton col-

lisions and heavy-ion collisions. Each of the two detectors is made of 4 rings of 32

scintillator counters, covering the pseudorapidity ranges of 2.8 < η < 5.1 for V0A

and −3.7 < η < −1.7 for V0C. The most important function is to provide fast

trigger information, it is 84% efficient at triggering on at least one charged particle,
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contributing to the minimum bias trigger selection. It can also discern collisions

between protons and residual gas in the beam pipe by exploiting the timing infor-

mation between the two discs to locate the vertex of the event along the beam line.

In heavy ion mode, it can provide a centrality trigger, as the number of particles it

records correlates with the number of particles produced in the collision.

2.2.13 T0

The T0 [51] provides the live collision start time for the TOF detector with a timing

resolution of 50 ps, as well as providing redundancy to the V0 counters and being

able to produce minimum bias and centrality triggers. It is made of two arrays of 12

Cherenkov counters, the basic elements of which are PhotoMultiplier Tubes (PMTs)

attached to quartz radiators, and they are situated at 375 cm for T0-A opposite the

muon arm and 72.7 cm for T0-C in front of the absorber for the muon arm. They

cover a pseudorapidity of −3.18 < η < −2.97 and 4.61 < η < 4.92 for T0-C and

T0-A respectively.

2.2.14 ALICE COsmic Ray DEtector (ACORDE)

The ACORDE [51], an array of plastic scintillator counters sitting on top of the

ALICE magnet, provided triggering of cosmic muons used to align and calibrate

central barrel tracking detectors, and detects single and multiple muon events al-
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lowing the study of high energy cosmic rays. The array consists of 120 scintillator

counters placed in pairs, one over the other, along the top of the ALICE magnet,

achieving a 90% efficiency. Atmospheric muons need at least 17 GeV of energy to

reach the detector underground, and the TPC can track and measure the momen-

tum of muons up to 2 TeV, defining a wide range of energy in which the ALICE

detector can measure cosmic rays with the use of the ACORDE triggering.

2.3 Central Trigger Processor (CTP)

The trigger [86] is an electronic decision corresponding to whether an event, seen

by the detector, will be read out or not. The CTP manages the triggers in the

experiment and is located inside the cavern along with the detector, minimising the

latency of signals arising from cable lengths.

The CTP operates by receiving trigger inputs that come from the triggering detec-

tors, which it then processes to make a decision which is passed on as a trigger signal

to the Local Triggering Unit of the detectors. The ALICE trigger is designed as a

3-level system, L0, L1 and L2. It can receive three levels of trigger input and can

give three levels of trigger signals. This is due to the various speeds of the detectors

involved in the decision.

The CTP generates a L0 signal if one or more of the detectors detects a signal that

may correspond to a collision having taken place, such as when one pixel in the SPD
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has fired. If there are no vetoes on this level, such as when any of the detectors are

busy reading out the last event’s data, then the CTP sends a L0 trigger signal to

the readout detectors, which can begin to digitise the information in their channels.

If the event passes additional criteria, then a L1 trigger signal is sent, which tells

the detectors to continue processing the event, otherwise it is ignored. The L1

signal also affords more time to calculate more detailed event characteristics on-

line, such as whether the event really looks like a jet event (in case one does not

care about minimum bias events but specific types of events). After this, a L2a

or L2r (accepted or rejected) signal is sent about 100 µs (programmable) after the

L0. This corresponds to the drift time of the TPC, being the slowest detector to

read out data. This is the final deciding trigger on whether the event information

is readout to Data Acquisition.

Some of the detectors dedicated to providing trigger signals are the T0, V0 and ZDC,

all placed at forward positions. The T0 is a fast-timing trigger detector, employing

Cherenkov detectors to supply trigger signals, as well as an early ‘wake-up’ signal to

the TRD and start time for the TOF. The V0 rejects beam gas interactions using

the time-difference between the two asymmetrically positioned scintillator arrays,

and contributes to the multiplicity measurement.

The CTP constructs trigger decisions for, often, complex requirements; such as

requiring a trigger input signal from a group of trigger detectors to trigger the

readout of another group of detectors. An example of this is the minimum-bias
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‘OR’ trigger, which requires a hit in either the SPD, or one of the V0 counters, thus

creating a larger acceptance in phase space for the trigger than a single detector

could achieve. This is implemented through classes and clusters. A trigger class

is made of a trigger condition along with a cluster of detectors to respond to this

trigger. The trigger condition is a logical function of trigger inputs, for example

a combination of trigger inputs from the SPD and V0 can be made to produce a

trigger condition.

Another feature of the CTP is the ability to downscale trigger classes, in order to

increase the rate of relatively rare triggers, and control the rate of common triggers.

This is achieved by setting a percentage of common triggers to be allowed, so the

detectors spend less time as busy reading out events, thus allowing the readout of a

rare event when it occurs. In this way, rarer events can be collected at a useful rate

without compromising the amount of minimum-bias data taken.

The CTP is a crucial part of the data taking effort at ALICE, ensuring through its

handling of trigger inputs and outputs that the optimum yield of interesting events

are obtained, balancing requirements for different event types and beam parameters.

The monitoring of the trigger input rates is accessed through a few methods in the

control room, including a streaming readout on a large display, to display the rate

of trigger signals on-the-fly. This streaming readout was developed for the control

room of ALICE, and can display 3 updating graphs of the rate of L0 and L2 triggers,

along with their ratio, for multiple trigger classes. A screenshot of the output during
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a data-taking run is shown in Figure 2.8. This allows tuning of the triggers to get

the optimum rate of events recorded.

Figure 2.8: A screenshot of the monitoring tool during development, used at the control room of

ALICE to display the periodically updated history of trigger rates for a data taking run in 2011.

2.4 Data AQuisition (DAQ)

The DAQ [51] controls and manages the flow of data at the ALICE detector during

LHC collisions. It is designed to achieve a data storage rate of 1.25 GBytes/s.

After the CTP has issued a positive trigger decision to the detectors, the data is

sent by the DAQ system via many hundreds of optical data cables to a computer

farm known as Local Data Concentrators (LDC). The LDCs check the integrity of

the data and process them into sub-events. Sub-events are passed onto one of 40
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Global Data Collector computers to merge them into a whole event. This event is

stored by DAQ in one of 20 Global Data Storage servers temporarily, before being

archived at CERN where it becomes available for off-line analysis.

2.5 High Level Trigger (HLT)

The event data collected by the DAQ can reach a rate of 25 GByte/s. The HLT [51]

performs three functions to reduce this rate, while retaining the physics information,

for which it collects the detector information in parallel with the DAQ LDC. First,

its computer farm performs an on-line reconstruction and analysis to decide if the

event is worth keeping. Second, it can read out only part of the detector in which

there is interesting information. Lastly, it compresses the data by over an order of

magnitude before it is sent to the DAQ to be stored at CERN.

2.6 Detector Summary

The ALICE apparatus is a collection of detectors used together to measure the

aftermath of hadron collisions produced by the LHC. The central barrel detectors,

inside the solenoid magnet, provide tracking and particle identification for particles

above transverse momenta of 150 MeV/c, along with fast triggering information

and precise vertexing capabilities. The muon spectrometer, with its own dipole
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bending magnet, detects muons to study dilepton invariant mass, using an absorber

to filter out other particles such as electrons and hadrons. Detectors close to the

beam line provide information such as the timing of a collision used with the TOF,

and centrality information in lead-lead collisions. The CTP manages the input and

output of trigger signals to control what types of events are recorded, with the HLT

allowing higher selectivity of interesting data, and the DAQ system managing the

flow and storage of data.
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CHAPTER 3

MULTIPLICITY AND MEAN PT

The multiplicity distribution is a probability distribution to produce a number of

particles in a given type of proton-proton interaction, for example inelastic collisions.

The data from the ALICE detector is analysed to construct such distributions,

subject to fixed selections ensuring data quality. Selections on the spatial acceptance

and momentum space of the data are used to create distributions with as much

information about the collisions as possible, and for comparison with other results.

This analysis requires selections at the level of events and also individual tracks, as

well as corrections for triggering and tracking efficiency.
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The mean transverse momentum as a function of multiplicity indicates the average

momentum of particles produced in the collision according to how many particles

were produced. For this analysis, after event and track level selections, an efficiency

correction is applied during the mean transverse momentum calculation for each

event.

3.1 Event Selection

This analysis looks at inelastic proton-proton collision events recorded by ALICE,

yet not all of these events can be used. Only events that produce a hardware trigger

are recorded. The event sample is reduced further by quality cuts and background

rejection, and tuned for the two event types under study; Non-Single Diffractive and

Inelastic.

3.1.1 Trigger Selection

The CTP, introduced in section 2.2, provides a suite of fast trigger decisions tailored

to target specific types of events. The ‘Minimum-Bias’ (MB) triggers target all

inelastic proton-proton collisions which produce particles, as long as at least one of

the particles is seen by a trigger detector, and apply little biasing toward a subset

of these events, hence the name.

The detectors used in the MB triggers are the SPD and the two V0 detectors. The
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three fast L0 signals produced by these detectors are interpreted by the CTP to give

trigger decisions, and an event is recorded if any of the three detectors produces a

trigger signal. These three signals are recorded in the event data, and used off-line

to provide further selections of event types.

The two triggers used in this analysis are

MBOR: (V0OR or SPDOR) and V0BG,

and

MBAND: V0AND and SPDOR and V0BG,

where V0OR is a hit in either V0 detector, V0AND is a hit in both, SPDOR is a hit

in any pixel of the SPD, V0BG signals a beam-gas collision identified by the time

difference of two hits in each of the V0 detectors, and a bar over the trigger name

means no signal registered in that trigger.

The MBOR trigger provides the least possible bias in selecting inelastic collision events,

allowing a hit in any of the three detectors to satisfy its requirements. For this

reason, this is the trigger condition used when selecting events for analyses studying

inelastic collisions.

The MBAND trigger has a more restricted acceptance, designed to exclude single

diffractive events that tend to produce particles in one side of the detector and
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none in the other. The requirement that both V0 detectors register a hit biases

against single diffractive events, thus providing an optimum choice for a non single

diffractive analysis.

The efficiencies of these triggers at selecting events with different processes are shown

in Table 3.1 for all the 3 collision energies used. These efficiencies were calculated

using detailed simulations of the ALICE detector that match its status during data

taking. The two models, Pythia [30] and Phojet [31], differ mostly in their predic-

tions of double-diffractive events, but agree on the suppression of the single diffrac-

tive events by the MBAND trigger, especially at higher collision energies. This justifies

the use of the more restrictive trigger in selecting Non-Single-dffractive events, even

though the overall efficiency for this class is between 85% and 95%. The fraction of

diffractive and non-diffractive events, as well as the inelastic cross section, is shown

for the three collision energies in Table 3.2.

3.1.2 Vertex Selection

The Interaction Point (IP) of an event is where the hadron collision took place. It

is referred to here as the ‘vertex’ of the event, though there can be many vertices.

Multiple collisions in the same event, known as ‘pileup’, have multiple vertices, and

the decay of heavy particles produced in the collision also have vertices with charged

particles emanating from them. The vertex of the collision between the LHC hadrons

is called the ‘primary’ vertex, secondary vertices refer to weak decays. The choice of
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Table 3.1: Trigger efficiencies in percent for the MBOR and MBAND triggers in selecting events with

given processes

MBOR

900 GeV 2760 GeV 7000 GeV

pythia phojet pythia phojet pythia phojet

Non-diffractive (ND) 99.96 99.98 99.89 99.97 99.81 99.94

Single-diffractive (SD) 59.94 59.49 43.80 41.64 32.99 31.08

Double-diffractive (DD) 91.61 97.82 88.75 95.66 87.01 93.94

Non-Single-diffractive (NSD) 98.97 99.69 98.25 99.65 98.42 99.35

Inelastic (INEL) 91.37 90.28 91.02 86.13 86.73 83.56

MBAND

900 GeV 2760 GeV 7000 GeV

pythia phojet pythia phojet pythia phojet

Non-diffractive (ND) 95.42 97.97 95.42 97.91 95.17 97.49

Single-diffractive (SD) 10.94 10.78 3.61 2.70 0.947 0.606

Double-diffractive (DD) 34.43 64.90 35.70 90.72 37.89 59.07

Non-Single-diffractive (NSD) 88.25 93.52 86.62 95.18 88.92 93.73

Inelastic (INEL) 73.19 74.15 75.59 73.63 73.21 72.19
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Table 3.2: Inelastic cross section for proton-proton collisions with
√
s of 900 GeV [87], 2760 GeV

and 7000 GeV [88], and the fraction of non-, single- and double-diffractive events in generated

inelastic events for Pythia and Phojet.

900 GeV 2760 GeV 7000 GeV

σINEL 50.3± 0.4± 1.0 mb 62.8+2.4
−4.0 ± 1.2 mb 73.2+2.0

−4.0 ± 2.6 mb

pythia phojet pythia phojet pythia phojet

ND 71.1% 66.3% 73.9% 71.7% 73.2% 69.4%

SD 19.5% 23.4% 13.3% 23.3% 17.9% 23.1%

DD 9.7% 1.0% 12.8% 5.6% 9.0% 7.5%

the primary vertex in the case of pileup is the vertex with the most contributions,

or tracks pointing to it.

The primary vertex of the event is determined with the SPD tracklets (see sec-

tion 2.2.1). If the x, y and z coordinates of the vertex cannot be found, usually

due to there only being one tracklet available, then the z-position of the vertex is

reconstructed assuming the radial co-ordinates of the vertex are the same as the

average radial co-ordinates during that data-taking period.

For this analysis, there is an overall selection of events which have a vertex within

10 cm along the beam axis from the nominal vertex point, the centre of the central

barrel detectors. For all three energies analysed, the distribution of the vertex z-

coordinate follows a Gaussian with a sigma of ∼ 6.2 cm, and a mean < 1.5 cm, so

this selection removes ∼ 10% of events with a reconstructed vertex.
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A further selection is made of the vertex z-position depending on the pseudorapidity

selection of the measurement, as it affects the acceptance of tracks in each detec-

tor. The track selection criteria are summarised in Table 3.4. Four pseudorapidity

intervals were considered, and the acceptance of primary tracks with regard to the

individual track pseudorapidity controls the choice of the z vertex selection used.

Figure 3.1 shows the acceptance of global tracks, using the ITS and TPC detectors

together, as a function of pseudorapidity and vertex z position. A cut is made to

show only cells where at least 20% of primary tracks are found. The same is shown

for SPD tracklets in Figure 3.2 and, as this shows a tighter acceptance on tracks, it

ultimately constricts the vertex ranges used, as the tracklet cluster information is

used in the reconstruction of the majority of global tracks.
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Figure 3.1: Acceptance of global tracks as a function of pseudorapidity and vertex z position (cm),

cell shading represents the fraction of primary tracks found
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Figure 3.2: Acceptance of SPD tracklets as a function of pseudorapidity and vertex z position (cm),

cell shading represents the fraction of primary tracks found

The vertex z cuts chosen using these acceptance maps are given in Table 3.3. Also

shown are the approximate fraction of events with a good reconstructed vertex kept

after the vertex cut is applied, correct for all the data sets used in this study. The

tightest cut excludes almost half of the events, but this will not affect significantly

the results more than removing the final few bins of multiplicity, which are generally

removed anyway due to low statistics. Without this cut, however, a bias towards

low multiplicity events would be introduced. Events with a large displacement in z

from the detector centre would have tracks of large pseudorapidity that would be

missed, causing an erroneous measure of the event multiplicity.

The edges of the acceptance regions have a lower primary track reconstruction effi-

ciency, so it is prudent to make the vertex cuts slightly tighter than shown in the
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Table 3.3: Selection of the primary vertex z position (cm) depending on the pseudorapidity interval

required, along with the approximate fraction of events with a good vertex selected

|ηmax| |vertex-Zmax| (cm) percentage of events retained (%)

0.5 10 ∼ 92

0.8 7 ∼ 81

0.9 5 ∼ 64

1.0 4 ∼ 51

acceptance maps. This also reduces the correction applied to the measurement to

remove the detector effects and extract the true distribution from it.

The combined efficiency for triggering and vertex construction is shown for the three

studied collision energies using Pythia and Phojet generated data in Figure 3.3, as

well as including the contamination of the NSD sample with SD events.
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Figure 3.3: Combined triggering and vertexing efficiencies for inelastic and NSD events as a

function of charged multiplicity in |η| < 1.0, estimated using Pythia and Phojet generated data at

the three studied collision energies. The fraction of SD events included in the NSD selection is

shown. The triggers for selecting inelastic and NSD events are ‘MBor’ and ‘MBand’ respectively,

described in the text.

3.2 Primary Track Selection

After selecting the pseudorapidity interval in which to look for tracks, cuts are

applied to the tracks individually to select primary particles. In this study, a primary
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particle has the following properties:

• it was produced in the hadron collision,

• it is a product of a strong or electromagnetic decay,

• it is a stable particle.

The first two conditions can be met by requiring the track to come from the primary

vertex. This is achieved using a selection on the distance-of-closest-approach (“dca”)

of the track to the vertex. It will select particles produced in the hadron collision

itself, and discriminate against those produced in secondary (pileup) and material

interactions.

This selection will also remove many particles produced in weak decays, also called

“feed-down” decays. This is because the time taken for a weak decay is significantly

longer than a strong decay, roughly 10−10 seconds compared to 10−24 seconds, and

so a particle that decays weakly will travel on average a few centimetres before

decaying. A selection of 2 cm is applied to the z-dca of the track to the vertex,

measured along the beam line direction. The radial dca distribution of global tracks

with and without SPD hits is shown in Figure 3.4 and Figure 3.5, and displays

a strong dependency on the transverse momentum of the track. Therefore, the

radial dca selection is transverse momentum dependent, and follows the form of

equation 3.1,

dcamax = 0.0182 +
0.035

PT
1.01 , (3.1)
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where pT is in GeV and dcamax is in cm.

The tracks reconstructed with hits in the SPD layers have a narrower dca distribution

than the tracks without, as the SPD hits allow a more precise fitting of the track,

otherwise the fitting extrapolates further. To account for this, the dca cut is widened

by 50% for tracks without hits in the SPD, shown in Figure 3.5 as the black line.
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Figure 3.4: The perpendicular dca distribution (x-axis) of global tracks with SPD hits as a function

of transverse momentum (y-axis), created from Monte Carlo data. The left hand plot shows primary

tracks, the right hand shows secondaries from weak decays and material interactions. The black

line shows the dca cut.

The efficacy of this cut is shown in Figure 3.6, for the transverse momentum range

of 150 MeV/c to 10 GeV/c. The majority of the primary tracks are selected, ap-

proximately 98.4% and 83.1% for tracks with and without SPD hits respectively, to

give an overall selection of 96.2% of the primary tracks. The selection also includes

27.9% of the secondaries overall, 32.6% and 19.3% from tracks with and without

SPD hits respectively. The dca distribution of tracks from weak decays follows an

approximately exponential distribution that comes from the distance travelled in
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Figure 3.5: The perpendicular dca distribution (x-axis) of global tracks without SPD hits as a

function of transverse momemtum (y-axis), created from Monte Carlo data. The left hand plot

shows primary tracks, the right hand shows secondaries from weak decays and material interactions.

The black line shows the dca cut.

the mean lifetime of the decaying particle. For the material secondaries, the dca

distribution is flat with a broad peak around the vertex. The flatness comes from

the random material interactions and gamma conversions, and the broad peak is

from particles produced by the collision products interacting with material and get-

ting scattered in the process from the primary particle trajectory. The shape of the

primary dca distribution comes from the tracking resolution of the detectors. The

tracks without SPD hits have a broader shape due to the lower tracking precision,

and the secondaries include tracks produced outside the SPD layers. Primary tracks

without SPD hits occur due to inactive modules in the SPD or a poor reconstruction.

The contamination of the sample of primary tracks with secondaries is shown in

Figure 3.7, counting tracks with and without SPD hits together. On average, the

total contamination is 2.8%, for tracks with transverse momentum above 400 MeV/c
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Figure 3.6: Perpendicular dca of tracks to the primary vertex. Left plot shows global tracks with

SPD hits, the right plot shows those without. Solid lines represent all tracks of the type specified

in the legend, shaded regions represent tracks accepted by the dca cut.

it is less, and at the lowest momenta it reaches a peak of 8%. This level of con-

tamination is not insignificant, but is accounted for in each analysis. In the case

of the multiplicity distribution, the unfolding process corrects for acceptance and

efficiency effects, as well as background contamination, as shown in section 3.5. For

the mean transverse momentum analysis, the effect of the secondaries is included as

a systematic error.

3.3 Pileup

Pileup is the occurrence of two or more collisions in the same bunch crossing, such

that one recorded event contains particles from multiple independent collisions.

Clearly, multiple collisions in one event will contaminate analyses and measurements

made of multiplicity and mean momentum, so identifying pileup events is important

for ensuring a pure sample of events. This is especially important for the multiplicity
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Figure 3.7: Fraction of accepted tracks which are secondaries, as a function of transverse momen-

tum.

analysis, as it will clearly bias the measurement towards higher multiplicity events.

After removing events identified as pileup, the effect of the remaining pileup needs

to be known; and for this the phenomenon must be modelled accurately.

The number of interactions in an event follows a Poisson distribution [89], as each

interaction in an event is a ‘successful trial’ in an unknown large number of trials.

Thus, the probability for n interactions in a bunch crossing is

P (µ, n) =
e−µµn

n!
(3.2)

where µ is the average number of interactions per bunch crossing.
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3.3.1 Average Number of Interactions, µ

The average interaction number for a particular run is calculated using the CTP

‘scalars’; counters of the number of fired trigger classes (see section 2.3) which is

recorded every minute. The rates of two trigger classes were used for this calculation,

“CINT1B” and “CBEAMB”, defined thus:

CINT1B: MBor and Beam A and Beam C,

CBEAMB: Beam A and Beam C,

where Beam A/C indicates the presence of that beam (anti-clockwise or clockwise

beam) during the bunch crossing. Thus, CBEAMB indicates both beams present

during a bunch crossing, meaning a collision between protons from each beam can

happen, and CINT1B indicates that an interaction was detected while both beams

were present.

Simply dividing the number of interaction triggers (CINT1B) by the number of

bunch crossings with both beams present (CBEAMB) gives the probability of at least

1 interaction, which is equal to 1− e−µ, or 1 minus the probability of no interaction

occurring. To account for background noise, such as triggers from cosmic rays,

beam-gas collisions and shower particles from the collimators, the rate of interaction

triggers when there is one or no beams present is used to correct the number of

CINT1B triggers.
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Therefore, the average number of interactions per bunch crossing with both beams

present is

µ = ln(CBEAMB)− ln(CBEAMB− CINT1Bcorrected), (3.3)

where CINT1Bcorrected is the interaction trigger count corrected for background

sources [90].

3.3.2 Pileup Simulation

Using the Poisson description of pileup, the contribution of multiple collision events

to the multiplicity distribution can be predicted, given the average number of in-

teractions is known (using equation 3.3), and the multiplicity distribution for single

collision events is known. The single event distribution cannot be directly measured,

as there is always the chance of pileup in the measured data, but an approximation

can be taken by using data recorded with a lower than average interaction rate. In

this instance, the pileup is simulated for data with an average number of interactions

of 0.061, and the approximately single event distribution uses data with µ < 0.028.

It must be taken from data, rather than Monte Carlo simulations, to ensure the

right shape for the distribution.

Treating the single collision event distribution as a probability distribution, random

samples are taken to create the multiplicity distributions for n-interaction events.

For events with more than 1 interaction, the measured multiplicity will depend on
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the restrictions on counting primary tracks. Firstly, the interaction with the largest

multiplicity is assigned to be the primary interaction, as the vertex is found with

greater precision, so the other interactions will be the pileup interactions. Secondly,

only tracks within a z-coordinate cut of 2 cm about the primary vertex are counted,

so tracks from pileup interactions that fall within this window are also counted. The

z-dca distribution of reconstructed tracks is shown in Figure 3.8.
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Figure 3.8: z-dca of tracks to the primary vertex, showing contributions from primary particles,

secondaries from weak decay and from material interactions

Though there is also a momentum-dependent radial dca cut of tracks to the vertex,

it is assumed in this simulation that the multiplicity in the probability distribution

only contains tracks within this dca cut.

Incorporating the effects of how multiplicity is measured into the simulation, the

distributions for events with multiple interactions are created using 108 random
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events from the single event probability distribution, and scaled according to the

interaction probability. The multiple interaction distributions simply need to be

scaled relative to the single interaction shape, using equation 3.4;

A(n) =
Nsingle

Nevent

P (n)

P (1)
=
Nsingle

Nevent

µn−1

n!
, (3.4)

where Nsingle is the integral of the single interaction distribution, and Nsample is the

number of samples used to simulate the multiple interaction distributions.

Figure 3.9 shows the relative abundances of events with different number of inter-

actions as a function of multiplicity, simulated using the parameters of the 7 TeV

data, which has the largest interaction probability, and largest reach in multiplicity.
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Figure 3.9: Relative abundances of n-interaction events, scaled assuming the 7 TeV data interac-

tion probability per bunch crossing (µ) of 0.061, using a small sample of this data at lower µ to

serve as the ‘single’ distribution.
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3.3.3 Discoverable Pileup

The pileup detection algorithm used during data analysis has two control param-

eters: the minimum separation between collision vertices in z and the minimum

number of tracks associated to the vertices. Studies [91] show that the best per-

formance of the pileup tagger is found requiring a minimum z separation between

vertices of 0.8 cm, and ≥ 4 contributors to each vertex. This makes false positives

a negligible occurrence (roughly 0.1%), whereas using ≥ 3 contributors gives ∼ 1%

false positives, and ≥ 2 contributors has up to 10% false positives.

Given the optimal vertex z separation threshold, one can see how much pileup is

discoverable, purely due to the vertex positions. The vertex z distribution is very well

described by a Gaussian curve, and the typical sigma, or standard deviation about

the mean, for the data used in this analysis is ∼ 6.2 cm. From Figure 3.10, using

the vertex distribution from the 7 TeV data to simulate pileup events with 2 and 3

interactions, the fraction of pileup events with a z vertex separation less than 0.8 cm

is ∼ 8%, assuming an interaction probability of 0.061 per bunch crossing, the highest

of all three data sets. For the triple interaction events, using either the minimum or

maximum z-separation as the z-separation for that event had a negligible effect on

the fraction of events below threshold, as the interaction probability means triple

interaction events contribute approximately 0.06% to the data sample.

Using the suggested parameters, the pileup tagging algorithm was found to have

an efficiency of 40 − 60% [91] for pileup events with a z separation > 0.8 cm, so a

94



3.3. PILEUP

z (cm)∆

­210 ­110 1 10

fr
a
c
ti
o
n
 e

v
e
n
ts

 b
e
lo

w
 s

e
p
a
ra

ti
o
n

­210

­110

1

Figure 3.10: Fraction of pileup events (double and triple interaction) with less than the largest

separation in vertex z position (cm). Dotted line shows fraction of events with z separation less

than 0.8 cm.

factor of 0.5 is applied in the model to the findable pileup to simulate the pileup

tagging.It should also be noted that the z-dca cut for primary tracks results in 81%

of pileup events not being affected by tracks from pileup, given the z-vertex distri-

bution and z-dca distributions described previously. From this model, for the 7 TeV

data, it is seen that 34% of all pileup would be identified, only counting events as

pileup if the observed multiplicity is affected by tracks from the pileup interactions.

Figure 3.11 shows the model predicted performance of the pileup tagger at reducing

the abundance of pileup in the multiplicity distribution for 7 TeV, using tracks in

|η| < 1.0. Above a multiplicity of ∼ 80, fluctuations due to low statistics become

apparent, but are smoothed over by averaging multiple bins, and the trend can still

be interpreted to show that at about a multiplicity of 90, the pileup (predicted to

be 25%) is reduced to 15%.
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Figure 3.11: Fraction of pileup per multiplicity bin, from pileup simulation of 7 TeV data, before

and after removal of tagged pileup events.

To compare this prediction with the pileup tagging effect on data, the ratio of the

multiplicity distributions before and after tagged pileup is removed is compared in

Figure 3.12. It shows good agreement up to multiplicities of 50, above which the

predicted change is larger than seen in data. This is most likely due to the tagging

efficiency having a multiplicity dependence, which was not studied, or uncertainty

in this efficiency depending on the generator model used. However, the difference

is less than 10% at the highest multiplicities, and this will be incorporated into the

systematic uncertainty of the multiplicity distribution before deconvolution.
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Figure 3.12: Ratio of multiplicity distributions before and after pileup removal, from pileup model

(black) and from 7 TeV data (red).

3.4 Multiplicity Counting

The detectors used to provide tracks in this analysis are the ITS and TPC. They can

each find tracks of their own, the ITS is able to construct “tracklets” from two hits

in the SPD layers, as well as “ITS-standalone” tracks from all six layers including

the SPD (called standalone as it ignores all other detectors apart from the ITS).

The optimal tracking efficiency comes from combining all the detector information

together, either by tracking one particle through both detectors, or each detector

tracking particles the other does not detect.

The analysis framework provides access to different groups of tracks according to

which detectors they are from. The broadest category is the “global” track, which

uses as many detectors as possible to construct each track, normally this means at
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least the TPC is used, usually along with the ITS. Particles not detected by the

TPC but by the ITS are reconstructed as “ITS-complimentary” tracks.

For a track to be considered in this analysis, it must satisfy criteria ensuring it is

of good quality and is a primary track. Each type of track mentioned above has

different criteria, shown in Table 3.4, and the ITS-complimentary tracks use the

same criteria as the global tracks while ignoring the TPC specific criteria. The dca

requirements refer to the distance of closest approach of the track to the primary

vertex, and a kink daughter is a particle that has decayed and its track has a kink

in it.

An algorithm was developed to construct a multiplicity measure using the four types

of tracks mentioned above, within a specified pseudorapidity interval. It is split into

two loops, the first over all tracks except the SPD tracklets, and the second over the

tracklets.

In the first loop, the tracks are selected for quality of reconstruction (different re-

quirements for each track type) and primary track selection. Tracks that fail the pri-

mary track requirements are labelled as “secondary”, and those that fail the quality

requirements are labelled as “rejected”. The selected global and ITS-complimentary

tracks are grouped together to make one multiplicity measure, as they are mutually

exclusive and therefore can be summed without double counting. At this point, be-

fore the tracklets are counted, there are two multiplicity measures called “ITSSA”
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Table 3.4: Quality criteria for different types of tracks to be accepted as primary tracks.

Global Number of TPC clusters > 70

χ2 per TPC cluster < 4

Not a kink daughter

Successful ITS and TPC refit during reconstruction

dcaz < 2 cm

dcaxy(with SPD clusters) < 0.0182 + 0.035
p1.01T

dcaxy(without SPD clusters) < 1.5×
(

0.0182 + 0.035
p1.01T

)
ITS-standalone Successful ITS refit during reconstruction

Not a kink daughter

dcaz < 2 cm

dcaxy(with SPD clusters) < 0.0182 + 0.035
p1.01T

dcaxy(without SPD clusters) < 1.5×
(

0.0182 + 0.035
p1.01T

)
SPD tracklet Two hits in the SPD layers pointing towards the primary vertex
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and “ITSTPC”. The latter measure is clearly the measure of choice as long as the

TPC is used, which for the data used in this thesis is always the case.

The second loop over the tracklets first checks whether the tracks are associated to

any tracklet, in that the track and tracklet are deemed to be from one particle. If

this is the case, tracklets associated to “secondary” tracks are ignored, and those

associated to “rejected” tracks are counted. Then all the un-associated tracklets

within the pseudorapidity range are also counted to complete the multiplicity mea-

sure. This is done for both the ITS-standalone tracks and the group of global and

ITS-complimentary tracks to give two more multiplicity measures, “ITSSA+” and

“ITSTPC+”. These measures give an even better account of the event multiplicity,

but the caveat is that with the SPD, there is no possible pT selection, and so the

measure will always have tracks with pT as low as 50 MeV/c included.

Thus, for the multiplicity meaurement for all pT, the ITSTPC+ counting method is

used, and for multiplicity measurements with a minimum pT threshold, the ITSTPC

method is used.

Figure 3.13 shows the correlation of measured and true multiplicity according to the

Pythia generator for the two counting methods of tracks with the respective pT cut.
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Figure 3.13: The correlation of measured multiplicity with the true multiplicity according to Pythia

generated data at
√
s = 7000 GeV and in the interval |η| < 1.0. Lines are drawn to show where the

true multiplicity equals the measured multiplicity. (Left) ITSTPC+ measurement (includes SPD

tracklets) for tracks with pT > 0 MeV/c. (Centre) ITSTPC measurement (without SPD tracklets)

for tracks with pT > 150 MeV/c. (Right) ITSTPC measurement (without SPD tracklets) for tracks

with pT > 500 MeV/c.

3.5 Unfolding the Multiplicity Distribution

The measurements made of event multiplicities from proton-proton collsions do not

give the exact value of the observable, the true multiplicity. A collision event with a

given multiplicity, a “cause”, is picked up by the detector as a measured multiplicity,

an “effect”, which typically has a spread of values, as shown in Figure 3.14.

The relationship between cause and effect can be represented as a detector “re-

sponse” matrix, using a detailed simulation of the detector with an event generator

to provide the matrix cell contents, as shown in Figure 3.15.

In this way, the measurement of the multiplicity with the detector described by

the response matrix can be represented as the matrix equation 3.5, where m is the

measured distribution, R is the response matrix and g is the generated, or true,
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Figure 3.14: A generated multiplicity distribution (black) and the measured multiplicity distribution

from events with true multiplicity of 20 (red), using Pythia simulated 7 TeV data.

distribution;

mi =
∑
j

Rijgj. (3.5)

The problem is how to obtain the generated distribution, given the measured dis-

tribution and the detector response. The solution is known as deconvolution; the

process of unravelling the effects of a matrix on a vector.

3.5.1 Naive Solution

The simplest approach to correct the measured distribution for detectors would be

to use bin-by-bin correction factors, calculated using the true and measured vectors

of a Monte Carlo event simulation. However, this approach only works if there is no

bin migration, it can only correct the effects of efficiency of event detection, and it
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Figure 3.15: Response matrices on the top rows built using ITSTPC tracks from
√
s = 7 TeV

Pythia generated data, with the projected measured multiplicity underneath. The left matrix is

generated from a physically motivated, unaltered (“Minimum Bias”) multiplicity distribution. The

right matrix is made from an artificially populated “flat” distribution, which extends to higher

multiplicity with a similar overall population to the minimum bias matrix.

also biases towards the model of the event generator.

From the form of equation 3.5, one may naively re-arrange the formula to obtain a

direct solution, essentially inverting the response matrix to get equation 3.6;

g = R−1m. (3.6)

Though technically this is an exact solution, it only works if applied to the convoluted

distribution from the response matrix. Another measured distribution which is

statistically independent of the response matrix will yield a nonsensical result with

large fluctuations; the bin-to-bin differences are amplified by the inverse matrix. The

fluctuating result is technically correct, in that when operated on by the response
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matrix it will produce the measured distribution, but the huge differences between

adjacent bins destroys the overall shape of the distribution, as shown in Figure 3.16.
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Figure 3.16: (Left) A response matrix generated from a negative binomial probability density func-

tion as the “cause” and multiplicity dependent efficiency and smearing for the “effect”. (Centre)

Using the measured distribution from the response matrix with the inverse matrix, the unfolded

distribution matches the truth perfectly. (Right) Creating a new randomly sampled truth from the

negative binomial pdf, and a new measured distribution, the result is now fluctuating wildly.

This instability, that causes such wild fluctuations when the initial distribution is

changed within statistical agreement to that used in the response, comes from the

off diagonal elements of the response matrix describing bin migration. This is best

described using a simple response matrix, such as equation 3.7, where ε is the bin

migration factor, taking values between 0 (unit matrix) and up to 0.5 (almost every

event is migrated into an adjacent bin).

R =



1− ε ε

ε 1− 2ε ε

ε 1− 2ε ε

ε 1− ε


(3.7)

For a response with a very strong diagonal (ε is close to zero), unfolding with its in-

verse will likely produce a satisfactory result, but only because such a matrix implies
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an almost exactly linear correlation between the true and measured distributions.

For matrices that describe an even chance that an event will migrate by only one

bin, where ε approaches 0.5, the negative correlations between bins in the inverted

matrix produce the large fluctuations in unfolding distributions only slightly varied

from the response matrix measured distribution. For any response matrix, as its

determinant gets smaller, or becomes essentially zero, the matrix inversion method

of unfolding becomes useless.

What this deconvolution method lacks is the importance of the distribution shape;

the correlation between the bins as well as their values. The importance of the

distribution shape can be imposed on the unfolding process through regularisation;

this analysis examines two unfolding procedures which provide regularisation.

It is also worth noting that the measured distribution requires some treatment before

unfolding; the low statistics of the higher multiplicity bins often results in discontinu-

ity of the distribution. Feeding this into an unfolding procedure essentially requires

that the solution also has such a discontinuity, introducing fluctuations in the tail

of the solution. To avoid this, all high multiplicity bins with an adjacent empty bin

of lower multiplicity are removed, as shown in Figure 3.17.
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Figure 3.17: Multiplicity distribution from Pythia simulated
√
s = 7 TeV data, with isolated high

multiplicity bins shown in red. These red bins are removed before the distribution is unfolded.

3.5.2 Single Value Decomposition Unfolding

Single Value Decomposition (SVD) unfolding, as described in [92] and implemented

in the ROOT framework [93], is similar to Tikhonov regularisation, as discussed in

[94] and [95], where in minimising the inverse matrix equation, a smoothing term

is added containing a Tikhonov matrix, much like the SVD method. It differs,

however, by decomposing the response matrix and rotating and rescaling the matrix

equation to introduce a weighting to the minimisation, and to expose the singular

values of the matrix which is used to decide on the optimal regularisation strength,

and thus suppress fluctuations.

The deconvolution can be expressed as a minimisation of the χ2 between the mea-
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sured vector and the solution folded with the response matrix;

(Rg −m)TM−1(Rg −m) = min, (3.8)

where M is the covariance matrix of the measured vector m. This is equivalent to

the standard chi-squared test (see equation 3.19).

The solution to this equation can be given by decomposing the response matrix as

follows:

R = USV T , (3.9)

where S is a diagonal matrix of the singular values of the response, and U and V are

orthogonal rotation matrices whose columns are called the left and right singular

vectors [92]. The rotation matrices rotate the response into a basis where the singu-

lar values are exposed, and back again. This technique allows the straightforward

calculation of the pseudo-inverse of the response matrix, as shown in equation 3.10;

R−1 = V S−1UT , (3.10)

but this is not used at this stage as the regularisation is yet to be applied; it gives

the same solution as the inverse response matrix with the same problems detailed

in section 3.5.1.

Before the regularisation is applied, the unknowns in the system of linear equations

represented by equation 3.8, the vector g is normalised such that it represents the
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deviation from the generated distribution used to populate R:

ωi = gi/g
response
i . (3.11)

This gives two advantages; first that if the generated vector used in R is similar to

that being unfolded, the normalisation gives a smooth vector requiring fewer terms

during the decomposition. The second is that this changes R from a probability

matrix to an event filled matrix, where bins with low population are not considered

to have low uncertainty, and bins with larger populations are given more weight:

the statistics of the bin defines its uncertainty.

The equations are also rescaled by the uncertainties in the covariance matrix M ,

such that the uncertainties are incorporated into the matrix R (now R̂) and the

measured vector m (now m̂). This now means the covariance of the rescaled m̂ is

the unit matrix I, and gives all the equations in the system equal weighting.

After these changes, there are still small singular values that will result in unphysical

oscillations in an exact solution. A regularisation term is added to the left hand side

of equation 3.8 that imposes smoothness by increasing in magnitude for oscillatory

solutions. The strength of the regularisation is controlled by a parameter, τ . To

avoid applying SVD to the system for every value of τ , the system is rotated further

such that the regularisation term is proportional to the unit matrix I. This changes

the m̂ vector into the d vector, also with a unit covariance, and allows the solution of

the regularised system (τ 6= 0) to be expressed in terms of the unregularised system
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(τ = 0), avoiding unnecessary SVD operations.

For a non-zero regularisation parameter, the solution can be expressed in terms of

the non-regularised system to avoid doing many SVDs:

z
(τ)
i =

disi
s2i + τ

, (3.12)

where z
(τ)
i is the rotated regularised solution and di is the rotated version of the

measured distribution mi [92]. The fraction effectively acts as a low pass filter to

suppress the contributions from small valued components of s, the vector of singular

values.

The choice of τ comes from inspecting the distribution of d, as the statistically

significant values will all be much larger than 1, typically the first k bins for a very

smooth measured distribution. The statistically insignificant ones are all distributed

about 1 above bin k, what with each component of d having an uncertainty of 1

due to rescaling based on the errors of the measured data and response matrix. An

example of a typical di distribution is shown in Figure 3.18.

From inspecting the di distribution, the critical bin k can be identified after which the

contributions from those linear equations just add noise, and so the regularisation

parameter is set to the singular value of that bin,

τ = s2k. (3.13)
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Figure 3.18: The distribution of the rotated m vector, di, taken from Phojet simulated 7 TeV data,

indicating how many bins contribute significantly to the unfolded distribution. In this example, the

critical bin k would be 6.

Without τ , this method is effectively producing the inverse response solution com-

plete with unstable oscillations, even after taking into account the uncertainty of the

response and measured distributions. Setting τ appropriately gives a much more sta-

ble solution, as shown in figure 3.19 comparing the SVD solution with and without

the regularisation, using a response map filled according to the expected multiplicity

distribution; the higher multiplicity area of the response is sparsely populated.

So, in the case of unfolding multiplicity distributions using a response matrix pop-

ulated according to a physical model of multiplicity, the procedure yields a stable

and smooth result, which matches well to the true generated distribution. Filling

the response matrix according to the expected multiplicity distribution does mean

that it becomes more sparsely populated as multiplicity increases, as it follows a

generally inverse exponential shape. This is fine if the response covers the range
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Figure 3.19: (Left) Distribution of rotated measured vector from Pythia simulated 7 TeV data,

showing the ideal cut-off bin to be ∼ 10. (Right) The unregularised unfolded distribution (grey

line), regularised unfolded distribution (black triangles) and generated distribution (red) from Pythia

simulated 7 TeV data and using a Phojet simulated 7 TeV data response map filled with Minimum

Bias events.

measured in the data, as is the case in Figure 3.19 where the Phojet measured dis-

tribution reaches up to ∼ 70 charged particles with pT > 150 MeV and |η| < 1.0

and the Pythia response covers up to the same range. However, the measured data

at 7 TeV reaches higher multiplicities than predicted by the models, such that the

minimum bias response maps will not be able to unfold the tail of the measured

distributions.

This can be overcome by populating the response map at higher multiplicities with

more events, requiring the generator to produce an event sample with an approxi-

mately flat multiplicity rather than a more physical distribution. Unfolding the test

distributions as above with a flat multiplicity map yields results such as Figure 3.20,

showing various choices of cut-off bin, but each yielding unsatisfying results. The di

distribution, when using the flat multiplicity map, does not behave as expected by

the unfolding method; instead of an exponentially falling line which then randomly
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fluctuates about 1, there seems to be two decaying shapes of different slope super-

imposed. Choosing a cut-off bin based on when di becomes statistically insignificant

leads to a choice of ∼ 30 in this case, but it clearly is not acceptable, containing

a large spike at the beginning, a satisfactorily smooth mid multiplicity region and

strongly oscillating tail. Smaller cut-off values dampen the higher multiplicity os-

cillations as expected, but produce a lower multiplicity structure, an indication of

over-determining the solution. Clearly, there is no choice of cut-off value which pro-

vides an adequate solution over the whole range of multiplicity when using a flat

multiplicity response map, a requirement to deal with the high-multiplicity-reaching

proton-proton data.
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Figure 3.20: (Left) Distribution of rotated measured vector from Pythia simulated 7 TeV data, and

response map with artifically increased high multiplicity population, and coloured arrows indicating

choices of cutoff bin. (Right) Ratio of unfolded distributions to generated truth using different

choices of the cutoff bin, shown in colours.

The failure of this unfolding method, when using a flat multiplicity response map,

may be due to the un-physical shape of the response map itself. The events generated

to fill it are produced according to an expected multiplicity distribution, giving a

low population of high multiplicity events. To populate the higher multiplicity bins,
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the simulation then produces events according to a box distribution. This means

the response map is filled with two different shapes of multiplicity distribution,

which could be causing the instability at either end of the unfolded vector, or more

simply the un-physical shape of the response map is imposing itself on the unfolded

result. The two shapes could also be applying an unfairly high weight to the high

multiplicity area of the response, which is not as well understood by the Monte

Carlo programs as the low to medium multiplicity regions.

Thus, a different unfolding method is used.

3.5.3 Unfolding Based on Bayes Theorem

An iterative approach to solving the matrix equation 3.5 is presented by D’Agostini [96],

and studied by Cowan [95] and Adye [97], based on Bayes theorem [89]. Equa-

tion 3.14 shows the theorem for the simple case of two events, A and B, where

the probability of event A given that B has happened is expressed in terms of the

probability of B given A has happened, and their individual probabilities, i.e.:

P (A|B) =
P (B|A)P (A)

P (B)
. (3.14)

The procedure treats the generated and observed distributions as cause and effect,

and the response matrix as the probability distributions for each given cause gi

producing an effect mj, where g and m are vectors of the generated, or true, and
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measured distributions respectively. With this notation, Bayes’ theorem becomes

P (gi|m) =
P (m|gi)P (gi)∑
l P (m|gl)P (gl)

, (3.15)

where P (gi|m) is the probability that given a measurement m is made, the ith

element of the generated vector is the cause, the sum in the denominator gives the

total probability of measuring m (the efficiency of the detector on measuring m),

and P (gi) is the probability of gi occurring.

The probability of the generated events P (gi) is the solution sought after, so in

practice an initial guess is used in its place, P0(gi), a best guess of what the result

could be or a uniform distribution if none is known.

Thus, for each measurement value mj, equation 3.15 can be applied as so;

P (gi|mj) =
P (mj|gi)P0(gi)∑
l P (mj|gl)P0(gl)

, (3.16)

where P (mj|gi) is essentially an element of the response matrix after it has been

normalised such that each cell represents the probability of a generated event gi

being the cause of a measurement mj. This normalisation is given by;

∑
j

P (mj|gi) ≡ εi ≤ 1, (3.17)

where εi is the efficiency of measuring an event gi. So, this normalisation means

that taking all the possible measurement cells for a given generated event gives the

probability distribution of that generated event producing a measurement mj. In
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this analysis, the efficiency εi is set to 1, so that the unfolding recovers the true

distribution of the triggered events, after which efficiency corrections are applied.

The g0 bin, a true multiplicity of 0 in a given pseudorapidity range, is also used, as

events can be recorded in which there are no tracks in the accepted pseudorapidity

range, but there are tracks outside this range. The m0 bin is used similarly.

Equation 3.16 corresponds to the inverse of the response, and an estimate of the

solution is given by:

ĝi =
∑
j

mjP (gi|mj), (3.18)

where ĝi is the estimate of the true generated distribution. If the initial distribution

P0(gi) and estimator of the solution P (ĝi) do not agree, then the solution does

not agree with the measured data. However, this step brings the (so far guessed)

knowledge of the generated distribution closer to the truth, as the solution estimate

lies between the initial guess and the true distribution, as shown in Figure 3.21.

A subsequent calculation using the previous solution as the a priori initial distribu-

tion will yield an even closer estimate, as the procedure builds upon the information

found in the previous iteration, and these iterations are continued until a satisfac-

tory convergence has been achieved. This updating of the probabilities based on

new information, i.e. the agreement between the solution and the prior distribution,

is the basis of the Bayesian interpretation of probability [89].

Although the calculation of the estimated solution does not actually create the
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Figure 3.21: Two iterative unfolding steps using toy data and a uniform prior distribution. The

second step (closed circles) is much closer to the true generated line (red) than the first step (open

circles).

inverse of the response matrix, if an infinite (or very large) number of iterations

are used the solution does converge to the oscillating solution given by the inverse

response, shown in Figure 3.22. By stopping the iterations after a convergence

condition has been met, the procedure does not reach the oscillatory stage, which

is an inherent regularisation of this method.

Convergence

The regularisation afforded by this method is controlled by the choice of prior dis-

tribution and the number of iterations used.

For the first parameter, a uniform prior is the default starting point, as it means

that all causes, or generated multiplicity values, are considered as possible contribu-
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Figure 3.22: Unfolding results of toy data using an increasing number of iterations. More iterations

introduces the oscillatory instability also found using the inverse matrix solution. The smoothest

result is from the fewest iterations, in this example 10 iterations (blue line).

tions to an effect, or measured multiplicity value. Using a physically motivated or

estimated distribution with a shape similar to the truth would achieve convergence

in fewer iterations, especially when the distribution has a steep inverse exponential

slope such as the multiplicity. This is borne out in the fact that using the true gen-

erated vector in unfolding the measured vector for a Monte Carlo sample provides

the solution in one step. However, it introduces the assumption that any bins of the

prior distribution without a value will not contribute to the measured distribution

regardless of the number of iterations. This is a problem for this measurement, as

the Pythia and Phojet generators predict a more steeply falling slope in multiplicity

at
√
s = 7 TeV, and thus do not provide many events with very high multiplicity.

Therefore, a flat prior is used to give an unbiased start to the unfolding.

The second control of regularisation lies in the number of iterations used, clearly
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too few iterations may not yield a solution close to the truth and too many intro-

duces wild oscillations. A measure of agreement is needed between each iteration

to judge whether the method has converged. The solution given by each iteration

cannot be used directly in an agreement test, as the true distribution of real data is

unknown. However the solution can be convoluted by the response matrix to show

what measurement distribution would be seen if that solution were true. Compar-

ing this “folded solution” with the measured data at each iteration then gives an

agreement measure to test convergence, which when satisfied means a satisfactory

solution to equation 3.5 has been found.

To test the agreement between the folded iteration result and the measurement, a

straightforward χ2 test can be used, the simplest form of which is:

χ2 =
∑
i

(fi −mi)
2

σ(fi)
, (3.19)

where f is the iteration result folded with the response matrix, and σ(f) is the

uncertainty of the folded result. This assumes that only the folded iteration result

has uncertainties, which are also uncorrelated; both assumptions are untrue. The

original measured distribution m has uncorrelated Poissonian errors, which need to

be taken into account as follows;

χ2 =
∑
i

(fi −mi)
2√

σ(fi)2 + σ(mi)2
, (3.20)

where σ(m) is the uncertainty of the original measured distribution. In addition,
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the unfolding procedure moves entries in the iterative result between bins, such

that the errors of those bins are now correlated, requiring a covariance matrix to

incorporate these into the agreement calculation. Thus, as shown in [89] the χ2

equation becomes

χ2 =
∑
i

∑
j

(fi −mi)V
−1
ij (fj −mj), (3.21)

where V −1ij is an element of the inverse covariance matrix incorporating the covari-

ance of the folded result, f , and the variance of the measured distribution m, by

simply adding σ(m) to the diagonal of V (f) before inverting it.

Covariance Determination

The covariance matrix V is too complicated to calculate analytically during the it-

eration process, but can be calculated numerically with toy simulations, as shown in

[98]. Each iteration step of the unfolding needs to have a covariance matrix, which

will be unique due to the correlation of uncertainties increasing with each itera-

tion. Therefore, enough covariance matrices must be prepared to cover a reasonable

amount of iterations, this analysis found 20 to be enough.

For every iteration, the propagated errors from the finite events in the generated

response matrix and statistical error of the measured data are both estimated using

1000 pseudo experiments each. Every pseudo experiment begins with either the data

or response matrix being “Poisson-shaken”, a term coined here to mean that each
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cell of the data vector or response matrix is set to a random number taken from a

Poisson distribution with the cells original value as the mean. The 1000 unfolded

solutions, and the 1000 solutions folded again, are then used in equation 3.22, where

x is the unfolded/folded vector, to compute the matrices for the data-shaken and

response-shaken covariances separately:

cov(xi, xj) = E[xixj]− E[xi]E[xj]. (3.22)

These separate covariances are added together to hold the total uncertainty intro-

duced and propagated through this iterative method, as the two sources of error,

finite MC statistics and measured data variance, are uncorrelated.

With the covariance matrices for the nth iteration result and its folded version, the

χ2 from equation 3.21 can be used when making comparisons with the previous

iteration solution and the original measured vector respectively. The variance of the

measured vector and the prior vector are added to the covariance matrices before

inversion. Now there are two χ2 checks for convergence; one between the current

and prior solution, and another between the folded version of the current solution

and the measured distribution.

A successful unfolding would achieve χ2
folded ∼ 1, showing neither over-determination

of the result (small χ2
folded) or an ambiguous fit (χ2

folded much more than 1). This

value shows that the two distributions are likely to have come from the same under-

lying function, the differences consistent with sampling and statistical uncertainties.
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Therefore, a threshold of χ2
folded < 1.1 is used for the measured and folded result

vector comparison to stop iterating. There is a hard limit of 20 iterations, found

through numerous tests of the method to be the maximum number of iterations

needed for convergence to occur, whether or not the above agreement requirement

is met.

The other test of convergence is to measure how much the χ2
folded changes between

each iteration, as so:

∆χ2
folded(n) =

χ2
folded(n)

χ2
folded(n− 1)

− 1, (3.23)

where n is the iteration number, and 1 is subtracted to reveal simply the fractional

change in the agreement measure. This is particularly useful for when the solution

converges before satisfying the χ2
folded < 1.1 requirement, as shown in Figure 3.23.

The χ2
folded agreement measure converges almost asymptotically after a rapid change

for the first 5 or 6 iterations. After these first few iterations, the χ2
folded changes

much less rapidly, and more iterations will introduce oscillations into the solution.

A threshold of ∆χ2
folded < 2% was found to be the optimal cutoff to prevent the

solution being ruined in the pursuit of a satisfactory χ2
folded.

Model Dependence

It is worth checking if the choice of generator used to produce the response matrix

influences the unfolded result. With Pythia and Phojet simulated data sets read-
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Figure 3.23: These plots are from unfolding Phojet simulated 7 TeV data with a Pythia flat mul-

tiplicity response map. (Top left) The agreement measure χ2
folded as a function of number of itera-

tions. In this case, it shows a convergence to a solution that does not meet the agreement criteria

between the folded solution and the measured distribution. (Bottom left) The fractional change

in χ2
folded for each iteration, with lines marking a change of 5%, 2% and 1%. (Top right) The

three unfolding solutions when iterations are stopped at a ∆χ2
folded of 5%, 2% and 1%. (Bottom

right) Ratio of the three unfolding solutions from top right with the true generated multiplicity. For

increasing number of iterations, the deviations from the true shape increase.
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ily available in the analysis framework, comparisons were made between these two

models, unfolding a measured distribution of one using the response map generated

with the other. The first set of tests used response maps populated according to

the model distribution of the multiplicity; as such they follow a generally negative

exponential shape and are poorly populated at higher multiplicity. This should not

affect the unfolding of the model distributions, however, as they both have a similar

range.

The results of this are shown in Figure 3.24, and clearly show that the procedure

gives a satisfactory solution when using a response map filled with a different model

of similar shape and range, and similar number of events. The iterations stopped

after achieving a χ2
folded < 1.1 in only 6− 8 steps. This is as expected, because the

response map describes which true multiplicities contribute to a measured multiplic-

ity, regardless of how the true multiplicities are distributed. Obviously, more events

in a true cell gives more reliable information on how it contributes to the measured

distribution.

For the data collected at the LHC, which reaches higher multiplicities than predicted

by Pythia and Phojet [23], especially at
√
s = 7 TeV, a response map filled accord-

ing to a uniform distribution is needed to populate the map at high multiplicities.

This also has the benefit of distributing the number of events more evenly between

the lower and higher multiplicity bins, reducing the introduced uncertainty from

unfolding into the less populated tail of the distribution.
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Figure 3.24: Results of unfolding Pythia data with a Phojet minimum bias response matrix and

vice versa. (Top left) Unfolded (black) and true (red) Pythia distribution using Phojet minimum

bias response map, with their ratio underneath. (Top right) Measured (blue) and convolved ver-

sion of unfolded (black) Pythia distribution using Phojet minimum bias response map, with their

ratio underneath. (Bottom left) Unfolded (black) and true (red) Phojet distribution using Pythia

minimum bias response map, with their ratio underneath. (Bottom right) Measured (blue) and con-

volved version of unfolded (black) Phojet distribution using Pythia minimum bias response map,

with their ratio underneath.
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The flat multiplicity response map was made only with Pythia, so this map was

tested in unfolding a Pythia and Phojet measurement, as shown in Figure 3.25.

This time, the iterations stop due to the change in χ2
folded, converging to values

above the desired value. The ratios between the solution with the true vector and

the folded solution with the measured vector still show good agreement in the range

shown, and the fact that the unfolding iterations stopped at all means that the χ2
folded

was converging. The reason why it is higher than required is that the calculation of

χ2
folded includes all the non zero bins, and with the flat response map, the very tail of

the measured distribution is unfolded to be compared with the sparsely populated

tails of the simulated distributions. Using the uniformly filled response to unfold the

measured data distributions with different pseudorapidity ranges, collision energies

and transverse momentum cuts, the unfolding always converges to a satisfactory

χ2
folded.

3.6 Mean pT as a Function of Multiplicity

The mean transverse momentum distribution as a function of multiplicity shows

the average outward momentum of particles produced in inelastic proton-proton

collisions, indicating the energy produced in the collision which is shared between

its products, and showing the correlation of this to the number of particles produced

in the collision.
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Figure 3.25: Results of unfolding Pythia and Phojet data with a Pythia flat multiplicity response

matrix. (Top left) Unfolded (black) and true (red) Pythia distribution using flat response map,

with their ratio underneath. (Top right) Measured (blue) and convolved version of unfolded (black)

Pythia distribution using flat response map, with their ratio underneath. (Bottom left) Unfolded

(black) and true (red) Phojet distribution using Pythia flat response map, with their ratio under-

neath. (Bottom right) Measured (blue) and convolved version of unfolded (black) Phojet distribution

using Pythia flat response map, with their ratio underneath.
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3.6. MEAN PT AS A FUNCTION OF MULTIPLICITY

This analysis uses the same event and vertex selections as the multiplicity analysis

above, as well as the primary track criteria. Tracks from the SPD are not used,

as it does not provide momentum information. This leaves tracks from the TPC

and ITS, known as “global” tracks. Global tracks are constructed with both the

ITS and TPC if possible, “ITSTPC” tracks. Otherwise, if a track is not detected

by the TPC (generally the case for low momentum particles), just the ITS is used,

providing “ITS complimentary” tracks.

To compare the pT resolution of the two types of tracks, the relative resolution is

plotted as a function of the pT for ITSTPC tracks and ITS complimentary tracks.

The relative pT resolution is given by

σ(pT)

pT
, (3.24)

where σ(pT) is the uncertainty in pT of the measured track. Figure 3.26 shows the

relative pT resolution for ITSTPC tracks, and the fraction of tracks with better

resolution than a given value along the x-axis. There is a spread of values at lower

momenta, less than 500 MeV/c, but the majority of values lie along a narrow ridge

showing a relative resolution of 1-2%. Almost 77% of ITSTPC tracks have a better

resolution than 2%, and 99% better than a 5% resolution. This shows that tracks

found by the TPC are reconstructed well for measuring pT.

The same information is shown for ITS complimentary tracks in Figure 3.27, showing

a larger spread in resolution for all momenta, and less than 1% of tracks with a
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Figure 3.26: (Left) Relative transverse momentum resolution of ITSTPC tracks as a function of

pT. (Right) The fraction of ITSTPC tracks with better pT resolution than a given value, as a

function of relative pT resolution. Data is MC generated.

resolution better than 5%, and ∼ 64% of tracks with a resolution better than 10%.

These make up the minority of the track population (∼ 12% according to the MC

simulations used to produce these figures) which were not reconstructed by the

TPC mainly because of not leaving many hits or clusters in the detectors. Whether

this is due to decay, detector interaction, or detector inefficiencies and acceptance,

these tracks are harder to reconstruct than those found by the TPC, and only the

ITS can reconstruct these on its own. As such, the pT resolution will be lower,

although the ITS is capable of achieving good resolution on its own (when used

in conjunction with the TPC, if possible, the combined reconstruction provides a

better pT resolution than individual detectors.) For this reason, tracks not seen by

the TPC are ignored in the mean pT measurement.

The structure seen in the left hand plot of Figure 3.27 is most likely a feature of the

combination of hits used in the ITS to reconstruct the track. For example, some
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Figure 3.27: (Left) Relative transverse momentum resolution of ITS complimentary tracks, as a

function of pT. (Right) The fraction of ITS complimentary tracks with better pT resolution than a

given value, as a function of relative pT resolution. Data is MC generated.

tracks may only have hits in the outer 4 layers, not the innermost 2, and the pT

resolution as a function of pT for these tracks will follow some curve. The different

combinations of hits in the six ITS layers leads to the different curves present in the

relative resolution plot. A similar structure is also seen for the ITSTPC tracks in

Figure 3.26, though it is not as prominent, as the TPC can reconstruct up to 159

points per track.

With the ITSTPC tracks selected, the efficiency of reconstructing these tracks, as a

function of pT, is required to correct for undetected tracks that are part of the se-

lected event. These were determined from simulation using both Phojet and Pythia

for all three energies used in this analysis, shown in Figure 3.28. The tracking effi-

ciencies should not change as a function of collision energy, but the detector set-up

changed over time, so the different efficiencies account for this. There is an al-

most negligible difference between the Pythia and Phojet models for the tracking
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3.6. MEAN PT AS A FUNCTION OF MULTIPLICITY

efficiency, so the Pythia efficiencies were used with the measured data.

With the efficiencies measured, the calculation of the mean pT can be calculated per

event, and then averaged over the total number of events:

pT =
1

Ne

∑
Ne

pT |event , (3.25)

where Ne is the total number of events in the data sample, and pT |event is the mean

pT for a single event. For each event, each ITSTPC track found will contribute its pT

value to the mean, but this must be corrected for the efficiency of detecting tracks

with that pT. The pT sum of all the tracks is increased, as each track contributes

its own pT, and the upwards correction accounts for the pT from tracks that were

missed. This upwards correction also applies to the number of ITSTPC tracks found

in one event, represented from here onwards as NT . Thus, the corrected number of

tracks for an event (N̂T ) becomes the sum of the inverse efficiencies for each track

found;

N̂T =

NT∑
i=1

1

ε(pT(i))
, (3.26)

where ε(pT(i)) is the detection efficiency for particles with a given pT. Then the

mean pT per event is given by:
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Figure 3.28: The efficiency of detecting ITSTPC tracks as a function of pT for different collision

energies and pseudorapidity ranges, indicated in the legends.
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pT|event =

∑NT

i=1 pT(i)ε(pT(i))−1∑NT

i=1 ε(pT(i))−1

=
1

N̂T

NT∑
i=1

pT(i)

ε(pT(i))
. (3.27)

These data are stored along with the measured multiplicity for each event. The

multiplicity measure is the same used in the multiplicity analysis, ITSTPC global

tracks and ITS complimentary tracks, to give the closest possible estimate to the

true multiplicity of the event. For each bin of multiplicity Nm, the average mean pT

can then be computed:

pT(Nm) =
1

Ne(Nm)

Ne(Nm)∑
i=1

pT|i , (3.28)

where Ne(Nm) is the number of events with a given measured multiplicity Nm.

This method was tested on simulated data to compare its result with the true

mean pT distribution as a function of the true multiplicity, generated by the model.

Figure 3.29 shows this comparison for Pythia generated
√
s = 900 GeV data, for

two minimum pT thresholds (150 MeV/c and 500 MeV/c) and two pseudorapidity

ranges (|η| < 0.5 and |η| < 1.0). The same is shown for Phojet generated
√
s =

2760 GeV data and Pythia generated
√
s = 7000 GeV data in Figures 3.30 and 3.31

respectively.

For each of the Figures 3.29, 3.30 and 3.31, the measured mean pT is calculated using
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Figure 3.29: Mean pT versus measured multiplicity for Pythia generated data at
√
s = 900 GeV,

with two momentum thresholds and the corresponding true distributions shown together, and the

ratio of the measured to true distribution inset underneath. The left side shows the measurement

with a pseudorapidity range of |η| < 0.5, the right with |η| < 1.0.
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the efficiencies taken from the generated data not used to generate the true distri-

bution. That is, if the measurement is made on Pythia data, then the efficiencies

from Phojet are used to correct them. Though the tracking efficiencies from Pythia

and Phojet are shown to be very similar, these comparisons are more independent

than using Phojet efficiencies to correct Phojet generated data. If there was a large

discrepancy between the measurement and the truth, comparing in this way would

show it better; but the measured mean pT using either Phojet or Pythia efficiency

corrections are negligibly different (less than 0.1%).
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Figure 3.30: Mean pT versus measured multiplicity for Phojet generated data at
√
s = 2760 GeV,

with two momentum thresholds and the corresponding true distributions shown together, and the

ratio of the measured to true distribution inset underneath. The left side shows the measurement

with a pseudorapidity range of |η| < 0.5, the right with |η| < 1.0.

The highest multiplicity bins in the plots show fluctuations due to the low event
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Figure 3.31: Mean pT versus measured multiplicity for Pythia generated data at
√
s = 7000 GeV,

with two momentum thresholds and the corresponding true distributions shown together, and the

ratio of the measured to true distribution inset underneath. The left side shows the measurement

with a pseudorapidity range of |η| < 0.5, the right with |η| < 1.0.
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population of those bins, and so for the real data the last few multiplicity bins will

be grouped together. For the lower momentum threshold selection, the ratio between

the true and measured distribution is systematically higher throughout the lowest

multiplicity bins. This is due to the multiplicity measure (ITSTPC tracks along

with ITS complimentary tracks, with pT above 150 MeV/c) having a correlation

with the true multiplicity that is almost, but not quite, exactly proportional, as

shown in Figure 3.13. Thus, for the first 5-10 bins of multiplicity where the gradient

of the of the mean pT distribution is largest, the migration of events into lower

multiplicity bins gives a higher than expected mean pT for that multiplicity, with

respect to the true distribution. This effect is minimal when the minimum track pT is

500 MeV/c, as the reconstruction efficiency for these tracks is almost uniform in pT,

and higher than for tracks with lower pT. This is shown in Figure 3.32 for ITSTPC

and ITS complimentary tracks, where the addition of ITS complimentary tracks

increases reconstruction efficiency when compared to without them in Figure 3.28.

The additional tracks have poorer pT resolution as shown in Figure 3.27, which is

why they are not used in the mean pT calculation.

Apart from the final bins of multiplicity, which will be grouped together for the

data, the agreement between the measured and generated mean pT distribution is

better than 5% for the rest of the distribution, and the mid multiplicity region has

agreement better than 2%. The initial overestimation of the measurement with

regard to the generated distribution for tracks with pT > 150 MeV/c, as well as

the overall difference between the measured and true distributions, will be used as
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Figure 3.32: The efficiency of detecting ITSTPC tracks and ITS complimentary tracks as a function

of pT for Pythia and Phojet generated
√
s = 7 TeV data, for |η| < 0.5 and |η| < 1.0.

systematic errors for the measured data.

3.7 Systematic Uncertainties

This section outlines the different contributions to the systematic uncertainty of the

charged particle multiplicity and mean pT measurements. Conservative estimates

are given based on studies in this work, and where appropriate are quoted from

published ALICE results.

3.7.1 Charged Particle Multiplicity

The track selection criteria have been studied previously in terms of the systematic

uncertainty of the multiplicity distribution [23, 53], and found to give a negligible

contribution to the systematic uncertainty. This is reasonable, as the unfolding

procedure depends on a response matrix built with simulated events defined by the
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true multiplicity and measured multiplicity, using the same track selections as for

real data.

The unfolding procedure itself has an uncertainty based on the statistical uncer-

tainty of the response matrix. The statistical uncertainty of the measured data is

negligible with respect to that of the response matrix. This is estimated using a

toy Monte Carlo with 1000 pseudo-experiments, where it is found that this sys-

tematic uncertainty increases for every iteration, and can reach up to 10% at the

highest multiplicity. This uncertainty is calculated for each unfolded multiplicity

distribution.

The correction to the number of NSD or inelastic events has the largest significance

for the first few multiplicity bins, and is estimated using the difference between the

efficiencies of selecting these events given by Pythia and Phojet, shown in Table 3.1.

This is as much as 5%, but above multiplicities of 10, it has a negligible effect.

The effect of generator dependence was studied with Pythia and Phojet, unfolding a

measured distribution from generator with the response matrix generated from the

other, and there was found to be negligible dependence.

The effect of the material budget on tracking was studied in [99], and found to have

a 0.6% systematic uncertainty for tracks with pT > 150 MeV/c whereas previous

ALICE multiplicity papers found it was negligible. Taking a conservative approach

to the systematic uncertainty, the uncertainties given in the former study will be

taken for all tracks.
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The effect of pileup on the multiplicity distribution is studied in section 3.3.3, giving

a conservative estimate of the remaining pileup after the removal of discoverable

pileup, using data taken when the average number of collisions per bunch crossing

µ = 0.061. The µ used in the pileup study is the average µ for the
√
s = 7 TeV

data, at
√
s = 2.76 TeV the average interaction probability is µ = 0.046 and at

√
s = 0.9 TeV it is 0.023. Thus, the systematic uncertainty estimated for pileup will

cover all three collision energies studied.

Given that the mean multiplicity of the distribution used for the pileup study is

NCH = 9.570±0.005, it is seen from Figure 3.11 that up to a multiplicity of 4×NCH

the fraction of pileup events is < 2%, at 6× the pileup is < 4%, and 8× it is

< 10%, increasing to 25% pileup in the bin with 10× the average multiplicity. The

uncertainty of these fractions is taken from Figure 3.12, where the predicted change

from pileup removal per bin is compared to the measured data. There is good

agreement up to 5 × NCH , after which the discrepancy increases to approximately

5− 10%, fluctuations in the measured data requiring a trend to be estimated rather

than a direct bin to bin comparison. Thus, from Figure 3.12; for multiplicities

higher than 8 × NCH , the uncertainty of the systematic error itself from pileup is

conservatively estimated to be 100%, thus making the systematic error from pileup

at this multiplicity to be ±20%.

Studies of the systematic effect of background events [53], such as beam-gas events,

have found them to be negligible.
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The particle composition of events, or the amount of different types of particles pro-

duced, can change the detector response due to the different interacting behaviour

of particle types in the detector. This has been studied in [99], and a conservative

uncertainty of 1% is applied to the distribution due to this effect.

3.7.2 Mean pT as a function of Charged Particle Multiplicity

The track selection criteria should have minimal effect on the mean pT, as the

reconstruction efficiency as a function of pT should account for this. It was found

in [63] to have at most a 0.3% effect for tracks with pT > 150 MeV/c, thus this is

applied to all the mean pT measurements as a conservative estimate of the systematic

uncertainty from the track selections.

The triggering efficiency is found to have a negligible systematic effect on the mean

pT, and there is no event-level correction applied making the event class normal-

isation uncertainty non-applicable; the event class for this measurement is simply

all triggered inelastic events. Inelastic events not triggered will generally have low

multiplicity, with an average pT the same as the triggered low multiplicity events.

This is corroborated by the mean pT analysis at
√
s = 0.9 TeV by ALICE [63]. This

study also shows a negligible systematic uncertainty from background events such

as beam-gas interactions, generator bias and material budget. Pileup at high mul-

tiplicities is found to be negligible due to the averaging over multiple multiplicity

bins, as pileup would likely shift an event into a higher multiplicity by no more than
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a few bins.

The detector efficiency of the TPC and ITS combined are reported to give a sys-

tematic uncertainty of 0.6% [63].

The uncertainty in the particle composition was found to have give a 0.1% systematic

uncertainty on the mean pT measurement, as reported in [63].

The method of extracting a mean pT measurement per multiplicity bin from the

event-by-event estimates of the mean pT is seen to have a 5% systematic uncertainty

for low multiplicity bins, and up to 2% for the rest of the mean pT versus charged

multiplicity distribution.

3.7.3 Summary

The systematic uncertainties given in this section are conservative estimates from

either studies performed in this analysis or quoted from published ALICE reports

where appropriate, and are summarised in Table 3.5.

For the multiplicity measurement, it is found that the unfolding method gives the

highest systematic uncertainty overall, with pileup giving the highest uncertainty

for high multiplicity bins.

The largest systematic uncertainty in the mean pT measurement is from the averag-

ing method used to calculate the mean pT using the event-level mean pT measure-
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Table 3.5: Contributions to the systematic uncertainties for the two analyses. Numbers in brackets

indicate high multiplicites, typically above 6× the average multiplicity.

NCH (High NCH) Mean pT versus NCH

Track selections accounted for in unfolding 0.3%

Analysis method 5% (< 10%) 5− 2%

Event class normalisation 5% (negligible) negligible

Material budget 0.6% 0.6%

Pileup < 5% (< 20%) negligible

Background negligible negligible

Particle composition 1% 1%

Total 9% (22%) 5%− 2%

ments.

These systematic uncertainties are combined in quadrature for each distribution.

The systematics for multiplicity are applied to the measured distribution before

unfolding with the exception of the event level correction, as this is estimated from

simulated data as a function of the true multiplicity.
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CHAPTER 4

RESULTS

This chapter presents the results of the work outlined in this thesis. It contains four

sections; the charged particle multiplicity, the approximation to the pseudorapidity

density, KNO scaling of the multiplicity distributions and the mean pT as a function

of charged multiplicity. Comparisons are made with previous results where possi-

ble, and with the Phojet and Pythia event generators. The Pythia tune used was

Perugia-0 [25].
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4.1 Charged Particle Multiplicity

The multiplicity distributions, created using the iterative unfolding method in sec-

tion 3.5, all required no more than 10 iterations to converge to a satisfactory result.

An example of the details of one the unfolding results, on ALICE data, is shown in

Figure 4.1, displaying a smooth unfolded result. The result, when multiplied by the

original response matrix to simulate it being measured by the detector, gives a good

agreement with the measured distribution; this cross-check shows that the unfolded

result would be detected as the observed distribution if it were the true multiplicity

distribution.

The multiplicity distributions for proton-proton collisions at
√
s of 900 GeV, 2760

GeV and 7000 GeV are shown in Figures 4.2, 4.3, 4.4 and 4.5 for two pseudorapidity

intervals and two event classes. They show good agreement with other comparable

experimental results, and excellent agreement with the ALICE published results

for the overlapping range. These distributions significantly extend the multiplicity

distributions measured by the ALICE experiment, and go farther in multiplicity

than the high luminosity CMS experiment.

Detailed comparisons between the unfolded multiplicity distributions and results

from other experiments and simulators are given for the three studied energies in

Figures 4.6, 4.7, 4.8 and 4.9. The NSD multipliticy distribution at 900 GeV in

|η| < 0.5 shows excellent agreement over the whole range with previous results from

UA5, CMS and ALICE published data. The UA5 distribution has two data points
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Figure 4.1: The multiplicity distributions (top panel) of the measured events (blue points), the

unfolded distribution (green points) and the folded result of the unfolding (red points). The ratio of

the folded result and the measured multiplicity is shown in the bottom panel. The unfolding took 6

iterations to achieve a χ2 per degree of freedom of 0.88 between the measured distribution and the

folded result.
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Figure 4.2: Multiplicity distributions of NSD events in the pseudorapidity interval |η| < 0.5, com-

pared with data from UA5 [50], CMS [54] and previously published ALICE [53] results.
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Figure 4.3: Multiplicity distributions of NSD events in the pseudorapidity interval |η| < 1.0, com-

pared with data from CMS [54] and previously published ALICE [53] results. For the middle energy,

this work has
√
s = 2760 GeV, the other results have

√
s = 2360 GeV.
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Figure 4.4: Multiplicity distributions of inelastic events in the pseudorapidity interval |η| < 0.5,

compared with data from previously published ALICE [53] results. For the middle energy, this work

has
√
s = 2760 GeV, the ALICE published results have

√
s = 2360 GeV.
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Figure 4.5: Multiplicity distributions of inelastic events in the pseudorapidity interval |η| < 1.0,

compared with data from previously published ALICE [23] results. For the middle energy, this work

uses
√
s = 2760 GeV, the ALICE published results use

√
s = 2360 GeV. The

√
s = 7000 GeV

distribution is normalised to the INEL> 0 event class by ignoring zero bin.
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4.1. CHARGED PARTICLE MULTIPLICITY

in the tail with relatively large errors that do not follow the usual trend, and the

rest matches with the other distributions. The Phojet distribution lies in excellent

agreement with the new and past data, whereas the Pythia shows some skewing

with regard to the data, indicating a different mean multiplicity.
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Figure 4.6: Multiplicity distribution of NSD events at
√
s = 900 GeV/c in the pseudorapidity inter-

val |η| < 0.5, compared to data from UA5 [50], CMS [54], previously published ALICE results [53]

and the Pythia and Phojet generators.

The 2760 GeV multiplicity distribution in |η| < 1.0 of NSD events shown in Fig-

ure 4.7 is reproduced less well by both generators. The Phojet distribution shows

some departure throughout the whole range, especially at low multiplicity, while

the overall trend is somewhat similar. The choppy structure of the ratio between

the generated and measured distributions above the multiplicity of 50 is due to the
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4.1. CHARGED PARTICLE MULTIPLICITY

grouped binning of the measured distribution.
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Figure 4.7: Multiplicity distribution of NSD events at
√
s = 2760 GeV in the pseudorapidity inter-

val |η| < 1.0, compared to data from CMS [54] and to the Pythia and Phojet distributions.

The 7000 GeV multiplicity distribution of inelastic events shown in Figure 4.8 with

at least one particle detected in the larger pseudorapidity interval of |η| < 1.0 shows

an excellent agreement with the published ALICE data. The zero multiplicity bin

is ignored in this comparison, as it is not included from the normalisation by the

published data, and by definition of the INEL> 0 trigger should be empty. The two

simulators do not reproduce the data here, underestimating the average multiplicity

and falling short in the tail of the overall distribution.

The same underestimation of the generators is seen in Figure 4.9 for NSD collisions
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Figure 4.8: Multiplicity distribution of inelastic events at
√
s = 7000 GeV with at least 1 charged

particle found in the pseudorapidity interval |η| < 1.0, compared to published ALICE results [23]

and to the Pythia and Phojet distributions.
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at
√
s = 7000 GeV. The overall comparison with CMS shows good agreement with

the measured multiplicity of this work.
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Figure 4.9: Multiplicity distribution of NSD events at
√
s = 7000 GeV in the pseudorapidity inter-

val |η| < 1.0, compared to data from CMS [54] and to the Pythia and Phojet distributions.

The multiplicity distributions taken with a minimum pT threshold of 150 MeV/c

and 500 MeV/c are shown in Figures 4.10 and 4.11, for a pseudorapidity interval of

|η| < 0.5 and |η| < 1.0 respectively.

In both the pseudorapidity intervals, it is clear that the generators describe the data

less well with increasing energy. Pythia gives a broader multiplicity distribution than

Phojet, and is closer to the measured data. The distributions with larger minimum

pT threshold have a better agreement with data than the lower threshold, suggesting
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Figure 4.10: Multiplicity distributions of inelastic events for tracks with pT more than 150 MeV/c

(left) and 500 MeV/c (right) for three collision energies in the pseudorapidity interval |η| < 0.5.

Filled data points are measurements form this work, open data points are distributions from Pythia

and Phojet.

a disparity at lower pT between the models and the data.

4.2 Pseudorapidity Density Approximation

Using the multiplicity distributions taken in the pseudorapidity interval of |η| < 0.5,

an approximation to the charged particle density with respect to pseudorapidity can

be estimated using the mean of that multiplicity distribution. This is carried out

for all three energies, for NSD and inelastic events, and INEL> 0 events in which

there is always a particle found within the measured pseudorapidity interval. The

results of these estimates are shown in Table 4.1 with errors. They are compared

with other proton-proton measurements taken in a similar pseudorapidity interval.

In the case of the middle energy of 2760 GeV which was used in this work, it is
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Figure 4.11: Multiplicity distributions of inelastic events for tracks with pT more than 150 MeV/c

(left) and 500 MeV/c (right) for three collision energies in the pseudorapidity interval |η| < 1.0.

Filled data points are measurements form this work, open data points are distributions from Pythia

and Phojet.

compared to results from other experiments taken at the lower collision energy of

2360 GeV.

Overall, the estimates of the charged particle density agree with measurements by

other experiments, within the uncertainties. This result provides confidence in the

success of the multiplicity analysis, as this comparison, to an observable derived

from a distribution, implies the correction prodecures worked well on the multiplicity

distributions.

These charged particle densities also supplement the ALICE results for densities of

NSD and inelastic events at
√
s = 7000 GeV.
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4.2. PSEUDORAPIDITY DENSITY APPROXIMATION

Table 4.1: The pseudorapidity density of charged particles within |η| < 0.5 estimated by the mean

of the multiplicity distributions, compared results from UA5 [55], CMS [54] and published ALICE

results [23, 53]. Errors on the values from this work are the combined statistical and systematic

uncertainties.

Event class 900 GeV 2360/2760 GeV 7000 GeV

NSD 3.67± 0.08 4.51± 0.06 5.91± 0.08

This work INEL 3.14± 0.05 3.90± 0.05 5.23± 0.07

INEL> 0 3.83± 0.06 4.70± 0.07 6.10± 0.08

NSD 3.58± 0.01+0.12
−0.12 4.43± 0.01+0.17

−0.12

ALICE INEL 3.02± 0.01+0.08
−0.05 3.77± 0.01+0.25

−0.12

INEL> 0 3.81± 0.01+0.07
−0.07 4.70± 0.01+0.11

−0.08 6.01± 0.01+0.20
−0.12

UA5 NSD 3.43± 0.05

INEL 3.09± 0.05

CMS NSD 3.48± 0.02± 0.13 4.47± 0.01± 0.16 5.78± 0.01± 0.02
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4.3. KNO SCALING

4.3 KNO scaling

The NSD multiplicity distributions for the two pseudorapidity intervals presented

are plotted in KNO variables in Figure 4.12.
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Figure 4.12: Multiplicity distributions of NSD events plotted in KNO variables, for |η| < 0.5 (left)

and |η| < 1.0 (right). The
√
s = 7000 GeV is compared to lower energy distributions as ratios,

including data from UA5 [50].

It can be seen, by eye, that the distributions of z = NCH

<NCH>
for |η| < 0.5 and

|η| < 1.0 lie on similar trajectories. Taking the ratio of each distribution to that

of the
√
s = 7000 GeV distribution shows a difference between the 900 GeV and

7000 GeV data that is more prominent in the larger pseudorapidity range, the

smaller pseudorapidity range seems to show a difference but the uncertainty of the

distribution makes this difficult to conclude for sure. There is little difference seen

between the 2360 GeV and 7000 GeV distributions.

The Cq moments from equation 1.22 are calculated for the multiplicity distributions

157



4.3. KNO SCALING

to test the validity of KNO scaling. The moments must be collision energy invari-

ant for KNO scaling to hold, and the calculated values for C2 to C5 are shown in

Figure 4.13 with their associated uncertainties.
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Figure 4.13: The moments C2 to C5 for the NSD multiplicity distributions as a function of collision

energy for |η| < 0.5 (left) and |η| < 1.0 (right), including moments calculated from the UA5

data [50].

By eye, the moments from this work for |η| < 0.5 do not change with energy within

errors, but there is some disagreement with the UA5 data, especially the 200 GeV

moments, which are lower. Table 4.2 shows that all the C2 moments agree, but the

higher moments, constant for this work, do not agree with the UA5 data.

For |η| < 1.0, the moments for 900 and 7000 GeV are constant with respect to

collision energy, within errors, but the middle energy moments are consistently lower,

implying a violation of KNO scaling.

Within the data of this work, the Cq moments for |η| < 0.5 are constant and demon-

strate KNO scaling, but these moments disagree with previous results. The moments
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Table 4.2: Cq moments of NSD multiplicity distributions for |η| < 0.5, including data from

UA5 [50]

UA5 This work

|η| < 0.5 200 900 900 2760 7000

C2 1.91± 0.09 1.95± 0.07 2.06± 0.08 2.10± 0.07 2.07± 0.06

C3 4.87± 0.64 5.43± 0.62 5.91± 0.69 6.20± 0.66 6.09± 0.59

C4 15.6± 3.3 19.8± 3.79 21.5± 4.16 22.9± 4.16 22.59± 3.79

C5 60.3± 16.6 88.5± 22.4 93.1± 23.8 99.7± 24.2 99.2± 22.7

Table 4.3: Cq moments of NSD multiplicity distributions for |η| < 1.0.

This work

|η| < 1.0 900 2760 7000

C2 1.92± 0.04 1.82± 0.03 1.90± 0.03

C3 5.01± 0.38 4.5± 0.32 5.00± 0.31

C4 16.2± 2.3 13.8± 1.8 16.1± 1.9

C5 61± 12 48.5± 9.1 60± 11
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4.4. MEAN PT AS A FUNCTION OF CHARGED MULTIPLICITY

for |η| < 1.0 cannot be said to be independent of energy, due to the 2760 GeV re-

sults, so this implies a violation of KNO scaling. Measurements of multiplicity made

in increasing intervals of pseudorapidity would shed more light on how KNO scaling

might be violated in terms of phase space.

4.4 Mean pT as a function of Charged Multiplicity

Measurements of the mean pT, per event, as a function of charged multiplicity are

made for inelastic collisions with tracks in |η| < 0.8, to compare with the published

ALICE results for 900 GeV. The mean pT of each multiplicity bin is shown for the

three collision energies studied in Figure 4.14, for tracks with pT > 150 MeV/c and

pT > 500 MeV/c. For tracks with pT larger than 500 MeV/c, the increasing mean

pT at low multiplicities slows its increase at roughly NCH ∼ 10, where the slope

of the distribution changes to a softer gradient for all three collision energies. The

same trend is seen for tracks with pT larger than 150 MeV/c, but there is an initial

decrease at low multiplicity, this is an artifact of the averaging calculation used to

produce the distribution, and is accounted for in the systematic uncertainty.

For the same multiplicity bins, the higher energy collisions are shown to have a

higher mean pT per event. This effect could be a scaling along the multiplicity

of the distribution according to the mean multiplicity at that collision energy, or

the effect of more ‘hard’ interactions during the collision per event with increasing
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Figure 4.14: Average transverse momentum as a function of multiplicity in |η| < 0.8 for inelastic

events.
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collision energy.

The change in slope of the distribution can be likened to the first part of a ‘rise-

plateau-rise’ behaviour of a ledge structure, although the plateau is not a true con-

stant in multiplicity, but has a smaller gradient than at low multiplicities. Evidence

of a second rise, or increase in gradient, is not seen at the highest multiplicity bins

measured in this work. Within the distribution uncertainties, the gradient after the

initial rise remains the same throughout the rest of the distribution.

The distribution at
√
s = 900 GeV is compared to the ALICE published results in

Figure 4.15, as well as the two MC generators Pythia and Phojet. The measured

distribution from this work matches very well to the ALICE published data. This

agreement justifies the decision to use the multiplicity measurement of the event

using the ITSTPC counting method as an estimate of the true multiplicity without

correction, as this multiplicity estimator is seen in MC generated data to follow the

true multiplicity very closely, as shown in Figure 3.13. The ALICE data points are

binned to a corrected multiplicity using a response matrix.

For the mean pT distribution with tracks of pT > 150 MeV/c neither Pythia nor

Phojet exactly reproduce the data. Pythia shows a closer relation to the measure-

ment than Phojet which has up to a 10% difference from the measurement, while

Pythia stays within 5%. In the case of tracks with pT > 500 MeV/c, the Pythia gen-

erator reproduces the measured distribution very well, and Phojet underestimates

again to the order of 10%.
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Figure 4.15: Average transverse momentum as a function of multiplicity for inelastic events at√
s = 900 GeV/c in |η| < 0.8 for tracks with pT > 150 MeV/c (left) and pT > 500 MeV/c (right).

This result is compared to published ALICE results [63], and to Pythia and Phojet distributions.
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Figure 4.16: Average transverse momentum as a function of multiplicity for inelastic events at√
s = 2760 GeV/c in |η| < 0.8 for tracks with pT > 150 MeV/c (left) and pT > 500 MeV/c

(right). This result is compared to Pythia and Phojet distributions.
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4.4. MEAN PT AS A FUNCTION OF CHARGED MULTIPLICITY

For the 2760 GeV data shown in Figure 4.16, the generators Pythia and Phojet

over- and underestimate, respectively, by about 10% the measured data for tracks

with pT > 150 MeV/c for the soft slope region after the rise, whereas the rise is

well reproduced by both. The pT > 500 MeV/c mean pT distribution is reproduced

very well by the Pythia generator for the entire multiplicity range, whereas Phojet

matches the initial rise but underestimates the softer slope above the rise.

The same level of reproduction by the generators as seen for the 2760 GeV distri-

butions is evident in the 7000 GeV distributions shown in Figure 4.17, where the

low multiplicity rise of mean pT is well reproduced for both track samples by both

generators which deviate from the measurement above the slope. Again, Pythia

reproduces very well, to within a few percent, the mean pT distribution for tracks

with pT > 500 MeV/c.
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Figure 4.17: Average transverse momentum as a function of multiplicity for inelastic events at√
s = 7000 GeV/c in |η| < 0.8 for tracks with pT > 150 MeV/c (left) and pT > 500 MeV/c

(right). This result is compared to Pythia and Phojet distributions.
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4.5 Summary

In this chapter, results are shown for the charged particle multiplicity of inelastic

and NSD events, and the mean transverse momentum per event as a function of

charged multiplicity for inelastic events.

The multiplicity distributions agree well with other experimental results, and extend

the tail of the measured distribution further than ALICE or CMS have currently

published. The Pythia and Phojet generators underestimate the multiplicity above

√
s = 900 GeV. Evidence of KNO scaling is seen for the data in this work in

|η| < 0.5, but the moments for the |η| < 1.0 imply that KNO scaling does not hold

in this pseudorapidity interval.

The mean transverse momentum correlation with multiplicity is extended past the

ALICE published results, and agrees will with the previous data. The distribution

has an initial rise followed by a gentler slope, and there is no indication of a second

steep rise indicative of a ledge structure. The Pythia generator reproduces well

the distribution for tracks with pT above 500 MeV/c, and slightly overestimates

it when the lower pT tracks are included in the distribution. Phojet consistently

underestimates the mean pT distribution.
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CHAPTER 5

CONCLUSION

This work presents the analysis of proton-proton collisions at
√
s = 900, 2760 and

7000 GeV, and the measurement of the charged particle multiplicity in two pseu-

dorapidity intervals of |η| < 0.5 and |η| < 1.0. The mean transverse momentum,

per event, as a function of charged multiplicity in |η| < 0.8 (in order to compare to

published ALICE results) for tracks with pT above 150 MeV/c and 500 MeV/c has

also been measured.

Two deconvolution methods were studied in order to correct the measured multi-

plicity distribution for detector effects; Single Value Decomposition (SVD) and an
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iterative method based on Bayes’ Theorem. The SVD method proved to be un-

successful when a response matrix produced with a flat, non-physical multiplicity

distribution is used to simulate the detector response. The iterative method proved

successful in deconvolving the measured multiplicity distribution, and was used to

correct the distributions presented in this work.

The effect of pileup for low interaction probability events was shown to contribute

increasingly as a function of multiplicity, contributing up to 25% of measured events

for the highest multiplicities above 10 times the average multiplicity, after detected

pileup events are removed.

The corrected multiplicity distributions extend the published ALICE measurements

by up to 60% for proton-proton collisions at
√
s = 7000 GeV and

√
s = 2760 GeV,

and up to 25% at
√
s = 900 GeV. The mean transverse momentum correlation with

charged multiplicity is similarly extended in multiplicity with respect to the ALICE

published results at
√
s = 900 GeV.

The charged multiplicity results are compared to results from UA5, CMS and ALICE

published results, and agree well. The Phojet MC generator reproduces the
√
s =

900 GeV well, but both Pythia and Phojet fall too steeply in multiplicity, failing to

reproduce the high multiplicity tail of the measurements.

The mean transverse momentum at
√
s = 900 GeV agrees well with the published

ALICE results. Pythia agrees well with the results for tracks above 500 MeV/c

for all collision energies, and with the pT > 150 MeV/c result at 900 GeV, over-

167



estimating the distribution by about 10% at higher energies using this pT thresh-

old. This particular tune of Pythia, Perugia-0, allows the interaction between QCD

strings during the simulation of the proton-proton collision that drives the corre-

lation between mean transverse momentum and multiplicity. Phojet consistently

underestimates the mean pT distributions above the initial rise by 10− 15%.

Using the Cq moments of the NSD multiplicity distributions, it is seen that KNO

scaling seems to hold in the pseudorapidity interval |η| < 0.5, but the data in

|η| < 1.0 implies a violation of KNO scaling.

168



REFERENCES

[1] D. Griffiths, Introduction to Elementary Particles (Wiley-VCH, 2008).

[2] D. H. Perkins, Introduction to High Energy Physics (3rd Edition) (Addison-
Wesley, 1987).

[3] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[4] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

[5] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585
(1964).

[6] ATLAS Collaboration, G. Aad et al., Phys.Lett. B716, 1 (2012), 1207.7214.

[7] CMS Collaboration, S. Chatrchyan et al., Phys.Lett. B716, 30 (2012),
1207.7235.

[8] M. Gellmann, Physics Letters 8, 214 (1964).

[9] G. Zweig, CERN-TH-401, 1964.

[10] O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964).

[11] N. Cabibbo and G. Parisi, Phys.Lett. B59, 67 (1975).

[12] F. Karsch, Lect.Notes Phys. 583, 209 (2002), hep-lat/0106019.

[13] U. W. Heinz, p. 165 (2004), hep-ph/0407360.

[14] F. E. Close, An Introduction to Quarks and Partons (Academic Pr, 1979).

[15] H1 Collaboration, ZEUS Collaboration, L. Lindemann, Nucl.Phys.Proc.Suppl.
64, 179 (1998).

169



REFERENCES

[16] STAR Collaboration, J. Adams et al., Nucl.Phys. A757, 102 (2005), nucl-
ex/0501009.

[17] M. Abreu et al., Physics Letters B 477, 28 (2000).

[18] J. Bjorken, FERMILAB-PUB-82-059-THY, FERMILAB-PUB-82-059-T
(1982).

[19] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

[20] J. Harris, eConf C030614, 030 (2003).

[21] A. Toia, J.Phys. G38, 124007 (2011), 1107.1973.

[22] ALICE Collaboration, K. Aamodt et al., Phys. Rev. Lett. 105, 252301 (2010).

[23] ALICE Collaboration, K. Aamodt et al., Eur.Phys.J. C68, 345 (2010),
1004.3514.

[24] R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and Collider Physics
(Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology)
(Cambridge University Press, 1996).

[25] P. Z. Skands, Phys.Rev. D82, 074018 (2010), 1005.3457.

[26] ALICE Collaboration, B. Abelev et al., Eur.Phys.J. C (2012), 1208.4968.

[27] P. Collins, An Introduction to Regge Theory & High Energy Physics, Cambridge
monographs on mathematical physics (University Press, 1977).

[28] A. Kaidalov, (2001), hep-ph/0103011.

[29] CDF Collaboration, D. Acosta et al., Phys. Rev. Lett. 91, 011802 (2003).

[30] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 0605, 026 (2006), hep-
ph/0603175.

[31] R. Engel and J. Ranft, Phys. Rev. D 54, 4244 (1996).

[32] I. Sarcevic, Acta Phys.Polon. B19, 361 (1988).

[33] A. Kaidalov and M. Poghosyan, Eur.Phys.J. C67, 397 (2010), 0910.2050.

[34] ATLAS Collaboration, G. Aad et al., New J.Phys. 13, 053033 (2011),
1012.5104.

[35] R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

[36] J. F. Grosse-Oetringhaus, CERN-THESIS-2009-033 (2009).

[37] Z. Koba, H. B. Nielsen, and P. Olesen, Nucl.Phys. B40, 317 (1972).

170



REFERENCES

[38] M. G. Bowler and P. N. Burrows, Zeitschrift fr Physik C Particles and Fields
31, 327 (1986).

[39] J. F. Grosse-Oetringhaus and K. Reygers, J.Phys. G37, 083001 (2010),
0912.0023.

[40] G. Alner et al., Physics Letters B 160, 193 (1985).

[41] A. Giovannini and R. Ugoccioni, Int.J.Mod.Phys. A20, 3897 (2005), hep-
ph/0405251.

[42] A. Giovannini and L. Hove, Zeitschrift fr Physik C Particles and Fields 30, 391
(1986).

[43] A. Giovannini and R. Ugoccioni, Nucl.Phys.Proc.Suppl. 71, 201 (1999), hep-
ph/9710361.

[44] CDF Collaboration, D. Acosta et al., Phys.Rev. D65, 072005 (2002).

[45] T. Alexopoulos et al., Physics Letters B 435, 453 (1998).

[46] S. G. Matinyan and W. Walker, Phys.Rev. D59, 034022 (1999), hep-
ph/9801219.

[47] A. Giovannini and R. Ugoccioni, Phys.Rev. D59, 094020 (1999), hep-
ph/9810446.

[48] (Ames Bologna CERN Dortmund Heidelberg Warsaw Collaboration), A. Break-
stone et al., Phys. Rev. D 30, 528 (1984).

[49] UA5 Collaboration, G. Alner et al., Phys.Lett. B160, 193 (1985).

[50] UA5 Collaboration, R. Ansorge et al., Z.Phys. C43, 357 (1989).

[51] ALICE Collaboration, K. Aamodt et al., JINST 3, S08002 (2008).

[52] CMS Collaboration, S. Chatrchyan et al., JINST 3, S08004 (2008).

[53] ALICE Collaboration, K. Aamodt et al., Eur.Phys.J. C68, 89 (2010),
1004.3034.

[54] CMS Collaboration, V. Khachatryan et al., JHEP 1101, 079 (2011), 1011.5531.

[55] UA5 Collaboration, G. Alner et al., Z.Phys. C33, 1 (1986).

[56] Aachen-CERN-Heidelberg-Munich Collaboration, W. Thome et al., Nucl.Phys.
B129, 365 (1977).

[57] UA5 Collaboration, K. Alpgard et al., Phys.Lett. B112, 183 (1982).

171



REFERENCES

[58] PHOBOS Collaboration, R. Nouicer et al., J.Phys. G30, S1133 (2004), nucl-
ex/0403033.

[59] STAR Collaboration, B. Abelev et al., Phys.Rev. C79, 034909 (2009),
0808.2041.

[60] UA5 Collaboration, G. Alner et al., Phys.Rept. 154, 247 (1987).

[61] UA1 Collaboration, C. Albajar et al., Nucl.Phys. B335, 261 (1990).

[62] X.-n. Wang and R. C. Hwa, Phys.Rev. D39, 187 (1989).

[63] ALICE Collaboration, K. Aamodt et al., Phys.Lett. B693, 53 (2010),
1007.0719.

[64] ALICE Collaboration, B. Abelev et al., Eur.Phys.J. C72, 2124 (2012),
1205.3963.

[65] CMS Collaboration, V. Khachatryan et al., Phys.Rev.Lett. 105, 022002 (2010),
1005.3299.

[66] CMS Collaboration, V. Khachatryan et al., JHEP 1002, 041 (2010), 1002.0621.

[67] A. Rossi et al., Nucl.Phys. B84, 269 (1975).

[68] T. Alexopoulos et al., Phys.Rev.Lett. 60, 1622 (1988).

[69] CDF Collaboration, F. Abe et al., Phys.Rev.Lett. 61, 1819 (1988).

[70] e. Evans, Lyndon and e. Bryant, Philip, JINST 3, S08001 (2008).

[71] ATLAS Collaboration, G. Aad et al., JINST 3, S08003 (2008).

[72] LHCb Collaboration, J. Alves, A. Augusto et al., JINST 3, S08005 (2008).

[73] TOTEM Collaboration, G. Anelli et al., JINST 3, S08007 (2008).

[74] LHCf Collaboration, O. Adriani et al., JINST 3, S08006 (2008).

[75] J. Pinfold et al., CERN Report No. CERN-LHCC-2009-006. MoEDAL-TDR-
001, 2009 (unpublished).

[76] Project to prepare the PS Complex to be a Pre-injector for the LHC, URL:
http://ps-div.web.cern.ch/ps-div/LHC-PS/LHC-PS.html, 1998.

[77] ATLAS Collaboration, G. Aad et al., Nature Commun. 2, 463 (2011),
1104.0326.

[78] ATLAS, J. Boyd and G. Unal, Luminositypublicresults, https://twiki.cern.
ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults, 2012.

172

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults


REFERENCES

[79] ALICE Collaboration, B. Abelev et al., Phys.Rev.Lett. 105, 252301 (2010),
1011.3916.

[80] ALICE Collaboration, 3D ALICE Schematic - with Description — ALICE
Figure Repository, https://aliceinfo.cern.ch/Figure/, 2013.

[81] ALICE Collaboration, Technical Design Report of the Inner-Tracking System,
CERN/LHCC 99-12, 1999.

[82] ALICE Collaboration, E. Carminati, F et al., J.Phys.G G30, 1517 (2004).

[83] ALICE Collaboration, Technical Design Report of the Time Projection Cham-
ber, CERN/LHCC 2000-001, 2000.

[84] ALICE Collaboration, A. Alici, arXiv (2012), 1203.5976.

[85] ALICE Collaboration, ALICE: Addendum to the technical design report of the
Photon Multiplicity Detector (PMD), CERN-LHCC-2003-038, 2003.

[86] M. Bombara, AliceTriggerIntroduction < ALICE < TWiki,
http://www.ep.ph.bham.ac.uk/twiki/bin/view/ALICE/AliceTriggerIntroduction,
2008, online TWiki page.

[87] UA5 Collaboration, G. Alner et al., Z.Phys. C32, 153 (1986).

[88] ALICE Collaboration, B. Abelev et al., Eur.Phys.J. C73, 2456 (2013),
1208.4968.

[89] R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in the
Physical Sciences (Manchester Physics Series), Reprint ed. (WileyBlackwell,
1989).

[90] University of Birmingham, P. Petrov, The mu values in Monalisa, 2011, A
presentation given in an ALICE internal meeting.

[91] Universita degli Studi di Torino - INFN Torino, G. M. Innocenti et al., Pileup
tagging Performance in high multiplicity events, 2010, A presentation given in
an ALICE internal meeting.

[92] A. Hocker and V. Kartvelishvili, Nucl.Instrum.Meth. A372, 469 (1996), hep-
ph/9509307.

[93] I. Antcheva et al., Comput.Phys.Commun. 182, 1384 (2011).

[94] R. Barlow, Maximum Entropy and Related Methods, URL: http://www-
group.slac.stanford.edu/sluo/lectures/Stat Lectures.html, 2010.

[95] G. Cowan, Conf.Proc. C0203181, 248 (2002).

[96] G. D’Agostini, Nucl.Instrum.Meth. A362, 487 (1995).

173

https://aliceinfo.cern.ch/Figure/


REFERENCES

[97] T. Adye, arXiv (2011), 1105.1160.

[98] WA97 Collaboration, F. Antinori et al., Eur.Phys.J. C14, 633 (2000).

[99] ALICE Collaboration, B. Abelev et al., JHEP 1207, 116 (2012), 1112.2082.

174


