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Abstract

The WH → `νbb̄ production and decay mode of the standard model Higgs Boson
is searched for using the 2012 LHC proton-proton data recorded by the ATLAS
detector at a centre-of-mass energy

√
s = 8 TeV. Events containing W → µν that

fail muon triggers are recovered using a novel technique of recording these events
with Emiss

T based triggers.

Two analyses are employed, one based on simple selection criteria to enhance the
signal-to-background ratio and one that uses more complex multivariate techniques
to separate signal from background. Both analyses exploit the different signal-to-
background ratios in regions of the reconstructed W transverse momentum and b-jet
tagging categorisation. The events recorded using the Emiss

T triggers are analysed
exclusively as well as merged with the events recorded using lepton triggers to im-
prove the sensitivity of the final analyses.

The multivariate merged analysis is found to be the more sensitive of the two anal-
yses, gaining 18.5% compared to the equivalent cut-based analysis. The observed
(expected) 95% CL limit for the WH → `νbb̄ mode is found to be 2.507 (1.369) and
the observed (expected) significance is 1.905 (1.534). The final value of the signal
strength for WH → `νbb̄ is µ̂ = 1.231+0.733

−0.665 which is consistent with the Standard
Model expectation.
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CHAPTER 1

Introduction

The search for the standard model Higgs Boson is a cornerstone of the Large Hadron

Collider physics programme, particularly for the ATLAS and CMS experiments,

which have been optimised for identifying and measuring Higgs final states. The

Higgs mechanism is a fundamental part of the standard model and provides an ele-

gant way of adding masses to fundamental particles. This thesis presents a search for

the standard model Higgs Boson with the ATLAS experiment at the LHC using the

WH → `νbb̄ production and decay mode. A novel technique, the use of transverse

missing energy triggers, is employed to recover events lost by the standard lepton

triggers. An important requirement for physics analyses at the LHC is to efficiently

record physics processes and to reduce backgrounds. This thesis also contains a

study of the identification efficiency of ATLAS calorimeter signal pulses.

Chapter 2 covers background information on the Higgs mechanism. This includes

a description of the theoretical basis, production and decay of the Higgs Boson and

1
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a survey of the experimental status, current as of January 2015, for the different

decay modes.

A brief overview of the Large Hadron Collider is provided in Chapter 3 and a more

complete breakdown of the ATLAS detector and its component subdetectors can

be found in Chapter 4. Studies performed of the efficiency for the ATLAS Level 1

Calorimeter Trigger, described in Chapter 5, to match ATLAS Calorimeter pulses

to LHC bunch crossings are presented in Chapter 6.

Chapter 7 details two analyses used to search for a Higgs Boson decaying to a b-

quark pair, produced in association with a W Boson that decays to a charged lepton,

in this case a muon, and a neutrino. A significant portion of the events containing

this process are not recorded by single muon triggers so both of these analyses use

triggers based on the missing transverse energy of the event to recover events. One

of the analyses uses a conventional cut-based selection to attempt to extract a signal

while the other uses more sophisticated multivariate techniques to separate signal

and background processes.

Chapter 8 describes the statistical fitting procedure applied to the WH → `νbb̄

analyses. The missing transverse energy triggered cut-based and multivariate anal-

yses are fitted both exclusively and merged into the ATLAS single lepton analyses

to search for this process. The results are presented in Chapter 10 for both the

missing transverse energy triggered analyses and the merged analyses.

An additional study is presented in Chapter 9 that seeks to measure the correlation

between the cut-based and multivariate analyses used in the ATLAS searches for

a Higgs Boson decaying to a b-quark pair, produced in association with a W or Z

Boson. This is also used to estimate the consistency of the results measured in data.
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A brief summary of the results of the analyses and studies contained in this document

is included in Chapter 11.



CHAPTER 2

The Higgs Boson

2.1 The Standard Model

The Standard Model of particle physics is a theoretical framework that describes

fundamental particles and their interactions [1]. A single Lagrangian equation is

the common representation of the Standard Model. The fundamental particles are

divided into fermions, the matter forming particles that have half integer spin, and

bosons, the force mediators that have integer spins. Fermions are further divided

into quarks, which experience the strong force, and leptons that do not. Both quarks

and leptons contain three generations with two particles in each generation. The

family of quarks consists of the up (u), down (d), charm (c), strange (s), top (t) and

bottom (b). The properties of these six quarks are summarised in Table 2.1. The

family of leptons consists of the electron (e), muon (µ), tau (τ) and a corresponding

neutrino (ν) for each. The properties of these six leptons are summarised in Table

4
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2.2. Neutrino masses are given as upper bounds based on current experimental

limits. Each of the fermions has an anti-particle partner with the same properties

apart from having equal and opposite charge and internal quantum numbers. The

first generation of quarks and leptons are the matter that makes up the majority of

our universe.

Quark Generation Mass EM Charge
Up 1 2.3+0.7

−0.5 MeV +2/3

Down 1 4.8+0.5
−0.3 MeV -1/3

Charm 2 1.275± 0.025 GeV +2/3

Strange 2 95± 5 MeV -1/3

Top 3 173.1± 1.3 GeV +2/3

Bottom 3 4.18± 0.03 GeV -1/3

Table 2.1: Properties of the six quarks in the Standard Model. Charge is expressed
as a fraction of the electron charge e [1].

Lepton Generation Mass EM Charge
e 1 0.511 MeV -1
νe 1 < 2 eV 0
µ 2 105.66 MeV -1
νµ 2 < 2 eV 0
τ 3 1.78 GeV -1
ντ 3 < 2 eV 0

Table 2.2: Properties of the six leptons in the Standard Model. Charge is expressed
as a fraction of the electron charge e [1].

The bosons act as mediators for the fundamental forces of nature, allowing the inter-

actions between quarks, leptons and other bosons to occur. The photon carries the

electromagnetic force, the 8-fold family of gluons carry the strong force and the W±

and Z carry the weak force. All charged particles can experience electromagnetic

interactions, fermions experience the weak force and particles carrying colour charge

(quarks and gluons) experience the strong force. The properties of the bosons are

summarised in Table 2.3.

Bosons and leptons do not form (or rather are not known to form) composite par-
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ticles apart from positronium, an electron and positron bound state, but quarks

can be bound together by the strong force to form hadrons. Hadrons are split into

mesons that are made up of a quark and an anti-quark and baryons that consist of

three quarks or three anti-quarks. One prominent example of a baryon is the proton

which is composed, at valence level in the quark model, of two up quarks and a

down quark. The strength of the strong force bonding the valence quarks together

causes a huge flux of gluons to be produced, many of which create virtual pairs of

quarks and anti-quarks. It is the combination of the valence quarks, sea quarks and

gluons which forms the full proton and its mass. The total longitudinal momentum

of the proton is shared out between its composite particles according to its Parton

Distribution Function (PDF). The PDF shows the probability for finding a particu-

lar parton type at a given x value, the fraction of the proton’s momentum. PDFs

are calculated specifically for the energy scale, Q2, at which the interaction occurs

due to the mediator. Different versions of the PDF for a proton at LHC energy are

produced, by groups using different calculation and experimental data, which are

referred to as PDF sets. An example of a PDF set produced for the LHC is shown in

Figure 2.1 for two different values of Q2.

Gravity has not been discussed here as it currently does not fit into the Standard

Model. No boson has been observed to mediate gravity though many theories pos-

tulate the existence of the graviton. Gravity has a strength approximately 1025

times weaker than the weak force (dependant on the particles involed), for reasons

currently unknown, and so is generally neglected in particle physics.

Force Boson Mass EM Charge
Electromagnetic γ 0 0
Weak Z 91.2 GeV 0
Weak W 80.4 GeV ±1
Strong g 0 0

Table 2.3: Properties of the Bosons in the Standard Model. Charge is expressed as
a fraction of the electron charge e [1].
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Figure 2.1: Example of a PDF which is part of the MSTW 2008 set [2]. The PDF

shows all parton flavours for two different values of Q2. The bands of each line
represent the ±1σ errors on the calculations.

2.2 The Higgs Mechanism

The Standard Model describes strong and electroweak interactions well but on its

own has no way of giving masses to fermions and bosons without an additional

mechanism. The weak and electromagnetic sectors were theoretically unified by

Glashow, Salam and Weinberg [3, 4, 5]. The Standard Model electroweak sector

is described in group theory as SU(2)L × U(1)Y where L denotes the left-handed

fermions and Y denotes the weak hypercharge.

The SU(2) group gives rise to 3 weak isospin bosons which are the W± and W 0 while

the U(1) group gives a single weak hypercharge boson which is the B0. These are,

however, not the same set of bosons which are observed in the electroweak sector

(i.e. the W±, Z and γ). Based on the electroweak theory all four bosons should be

massless but it is known that three of the four electroweak bosons have mass, the

Z and W±, and only one is massless, the photon. Therefore something additional

must be added to the theory to account for this and give mass to these three bosons.
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To bridge the gap between the bosons produced from the gauge group and the

observable bosons, the electroweak symmetry must be spontaneously broken by an

additional mechanism. This causes the rotation of the B0 and W 0 to form the Z and

γ as shown in Equation 2.1 in terms of the weak mixing angle, θW . The relationship

of the electromagnetic and weak force bosons means that for the high energy limit,

where the masses become negligible, the electromagnetic and weak forces behaviour

identically. The combining of the two forces, theoretically, is known as electroweak

unification. The weak mixing angle brings with it a discrepancy between the W and

Z masses which can be expressed as shown in Equation 2.2.

γ
Z

 =

 cos θW sin θW

− sin θW cos θW

B0

W 0

 . (2.1)

MZ =
MW

cos θW
. (2.2)

The method Glashow used to spontaneously break the electroweak symmetry was

to explicity add masses to the bosons without any additional field or mechanism. It

is a beneficial property of a theory, such as the Standard Model, that it be gauge

invariant. Gauge invariance means that the outcome of the theory is not depen-

dent on the gauge, or phase of the measurement relative of the wave function. The

Lagrangian should be unchanged by a change of gauge such as ψ → eiα(x)ψ, i.e.

invariance with a phase choosen at each point in spacetime. This is known as local

gauge invariance. Explicity adding a mass term to account for boson masses would

break the gauge invariance of the Standard Model Lagrangian.

This problem was overcome independently by Higgs [6], Brout & Englert [7] and

Guralnik, Hagen & Kibble [8]. The solution is to introduce a field into the Standard
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Model characterised by an SU(2) doublet [4] that takes the form:

ψ =

(
ψ+

ψ0

)
, (2.3)

where ψ+ and ψ0 are both fields defined in terms of four real components, ψ1−4,

such that:

ψ+ =
ψ1 + iψ2√

2
, (2.4)

ψ0 =
ψ3 + iψ4√

2
. (2.5)

The Lagrangian of this field can be written as:

L = (Dµψ)†(Dµψ)− V (ψ), (2.6)

where Dµ is the covariant derivative that refers to left handed fermions and with

the field’s potential energy, V (ψ) defined as:

V (ψ) = µ2ψ†ψ + λ(ψ†ψ)2, (2.7)

λ is a coupling constant so it would be expected that λ > 0, which also guarantees

that minima exist for the potential. The choice for µ then becomes µ2 > 0 or µ2 < 0.

In the case of µ2 > 0 there is only a single minimum at ψ = 0 with no possibility

of a broken symmetry. Taking µ2 < 0 gives the potential shown in Figure 2.2,

often described as the “Mexican Hat” potential. This potential has a degenerate,

rotationally symmetric minimum in terms of the vacuum expectation value, v, of:

ψ†ψ =
µ2

λ
≡ v

2
. (2.8)

The degeneracy of this ground state must be removed so one particular point on

the circle of possible values, at a radius of v/2 must be chosen. By convention in the
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Figure 2.2: Diagram showing the Higgs “Mexican Hat” potential [9].

standard model the gauge is chosen such that ψ1 = ψ2 = ψ4 = 0 and ψ3 = v. This

gives a chosen ground state of

ψ0 =

√
1

2

(
0

v

)
(2.9)

and equation 2.4 then becomes:

ψ =

√
1

2

(
0

v +H

)
(2.10)

in terms of the Higgs Boson field H, which is a radial excitation of the ground state.

This choice of direction for ψ is the crucial element of electroweak symmetry break-

ing and causes the Z and W± to experience an interaction with the Higgs field that

is not experienced by the photon. The potential of the Higgs field causes sponta-

neous symmetry breaking of 3 of the 4 generators of the electroweak SU(2)× U(1)

gauge group, usually referred to as the unphysical Goldstone bosons. The Z and

W± absorb the Goldstone bosons which gives the Z and W± mass and is then only

observable as their integer spin. The fourth, leftover, generator can be interpreted

as the Higgs boson itself.

This provides an explanation for how the Z and W± acquire mass but does not
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explain the masses of the fermions. An important property of the Higgs field is its

non-zero vacuum expectation value. Particles will therefore interact with the Higgs

field anywhere in space, obtaining mass through this interaction as if the Higgs field

were impeding their progress through a medium [10]. The strength of the interaction

between a fermion and the Higgs field is defined by each fermion’s Yukawa coupling.

The Higgs mechanism is not the only possible method of breaking electroweak sym-

metry and giving mass to particles. Many other models such as Technicolour [11] or

a Top quark condensate [12] allow electroweak symmetry breaking but this happens

in a less elegant way, requiring many additional parameters. The Higgs mechanism

is an attractive theory because its solution yields only one additional free parameter,

the mass of the Higgs Boson. The Higgs Boson brings with it a convenient way to

provide a negative contribution to certain processes such as WW scattering which

would otherwise have divergent cross sections at the TeV scale [13].

Under many extensions to the standard model such as Sypersymmetry there are

multiple Higgs Bosons predicted. Under these models there may be heavy Higgs,

charged Higgs doublets that would interact in a similar way to the W± and a light

Higgs within the mass range of current searches [14].

2.3 Production and Decay at the LHC

The Higgs Boson is very difficult to search for experimentally due to its very small

production cross section. This is exacerbated by the numerous ways that the Higgs

boson can decay giving a very small cross section times branching ratio for each of

the different final states. The total Higgs production cross section in comparison to

other processes is shown in Figure 2.3. This necessitates high energy colliders with

very large luminosities to produce enough Higgs Bosons to permit observation.
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Figure 2.3: Cross-sections of various processes as function of energy. The disconti-
nuity observed in several channels are due to changing from the pp̄ of the TeVatron
to the pp of the LHC [15].

.

A variety of processes can produce a Higgs Boson in proton-proton collisions, for

which Feynman diagrams are shown in Figure 2.4. The production modes are gluon-

gluon fusion, vector boson fusion, top quark pair fusion and radiation by a vector

boson.

Production by gluon-gluon fusion via a top quark loop is dominant at the LHC due

to the huge density of low x (fraction of the proton’s momentum) gluons that are

high enough energy to produce a Higgs at LHC beam energies. This production

mode is dominant for all Higgs masses considered at the LHC up to 1 TeV. Produc-

tion by gluon-gluon fusion yields only the Higgs decay products in the final state

and no additional QCD radiation.
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Figure 2.4: Feynman diagrams of the different possible production modes of the
Standard Model Higgs Boson.

A Higgs could also be produced by Top quark pair fusion or Vector Boson Fu-

sion (VBF) whereby two massive objects join to produce a Higgs Boson. The Higgs

couples to mass so massive objects are required for this process. In top quark pair

fusion, two pairs of top quarks are produced followed by one from each fusing to

form a Higgs Boson. The final state will contain the Higgs boson decay products

and the decay products from a top quark pair decay. In VBF, a quark from each

incoming proton radiates a vector boson (a W or Z) which then fuse to form a Higgs

boson. The final state contains the Higgs decay products and two quark initiated

jets, likely to be travelling at a small angle with respect to the beam line and in

opposite directions. VBF has the next largest cross-section after gluon-gluon fusion

but a large fraction of the events will contain jets that travel too close to the beam

line to be detected.

The final possible production mode is the radiation of a Higgs by a vector boson

(a W or Z), often described as Associated Production, V H or “Higgsstrahlung” by
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analogy to bremsstrahlung. The final state of V H events contain the Higgs decay

products as well as the W or Z decay products. By looking for events that also

contain a vector boson it is possible to make use of Higgs decay modes that are oth-

erwise too background-dominated. These production modes all have cross-sections

which decrease with increasing Higgs mass because it becomes increasingly difficult

to produce a more massive object. The cross-sections for the different processes as

a function of the Higgs mass are shown in Figure 2.5 for centre-of-mass energies
√
s = 7 TeV and

√
s = 8 TeV. The blue line in Figure 2.5 represents gluon-gluon

fusion, as shown in Figure 2.4c, the red line represents VBF, as shown in Figure 2.4b,

the green and brown lines represent associated production, as shown in Figure 2.4d

and the pink line represents tt̄ fusion, as shown in Figure 2.4a.
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Figure 2.5: Cross-sections as a function of Higgs mass for the different production
modes for a centre-of-mass energy,

√
s, of 7 TeV (Top) and 8 TeV (Bottom) [16].

The Higgs Boson can decay in a variety of ways, the relative fractions for which

change with the Higgs mass and are shown in Figure 2.6 for the low mass case. Some

of the decay modes that form a part of the LHC search strategies are described in

Section 2.4. The total width as a function of Higgs mass is shown in Figure 2.7

The quark decay modes, such as the H → bb̄ which is used in this thesis, are harder
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to observe because “naked” quarks can not be observed as they have colour charge, a

property known as colour confinement. Colour confinement is largelly a result of the

strength of the strong interaction increasing with separation. The initially produced

quarks will, as their separation increases when exiting the interaction, first radiate

gluons that produce quark and anti-quark pairs. These quarks and anti-quarks can

then further radiate gluons and so the initial quarks can produce a large number of

particles, the process of which is called parton showering [17].

As the quark and anti-quark pairs separate from each other a very strong gluon field

forms between the two. As the two particles continue to separate, there becomes a

distance at which it is more energetically favourable to bring a new quark and anti-

quark pair out of the vacuum than to continue to extend the field. This happens

continually such that a huge number of particles are produced together and form

colourless hadrons. This process is known as hadronisation [18].

Parton showering and hadronisation are processes which are modelled by Monte

Carlo generators, some of which are designed specifically for these and some of

which are more general. The use of Monte Carlo generators for this in an analysis is

described in Section 7.2. The combination of the two processes converts the initial

quark into a large cone of hadrons travelling close to collinear. The collection of

hadrons, initiated by the quark, is known as a jet [19].

2.4 Experimental Status

The experiments at CERN’s previous accelerator, the Large Electron-Positron Col-

lider (LEP) were able to place a lower bound on the Standard Model Higgs mass of

114.4 GeV using electron positron collisions at a centre-of-mass energy,
√
s, of up to

209 GeV [20]. Direct searches able to place this limit used the associated produc-

tion mode with a Z boson (as described in Section 2.3). The decay channels used

were the Higgs decaying to a b-quark pair with the Z decaying to two quarks, two

neutrinos or two leptons (including taus) and the Higgs decaying to two taus and
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the Z decaying to two quarks [21]. The LEP experiments also fitted simultaneously

many measurements in the electroweak sector that have a dependence on the Higgs

mass. This provides a constraint for the consistency of different Higgs masses with

LEP electroweak observations. This consistency, as well as the direct exclusion, are

shown in Figure 2.8.
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Figure 2.8: Final results of the LEP Higgs Search. The direct exclusion below 114.4
GeV is shaded in yellow and the consistency with EW measurements is shown as a
function of Higgs mass [22].

Searches by the two experiments at the TeVatron, Fermilab’s most recent collider,

were able to exclude the region 149 < mH < 182 GeV at 95% confidence limit using

proton anti-proton collisions at
√
s = 1.96 TeV [23]. Exclusion limits at 95% for the

full TeVatron dataset are shown in Figure 2.9. Some significant deviations from the
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background expectation were found, the largest being a local significance of 3.1σ

at a candidiate Higgs mass of 120 GeV. The significant excesses were found in the

H → WW channel and using associated production V H channels where the Higgs

decays to a b-quark pair. The associated production modes contribute the majority

of the significance because direct gluon-gluon fusion production is unlikely to pro-

ceed at Tevatron energies. There are few gluons with a high enough fraction of the

proton/anti-proton’s momentum to create a massive object such as the Higgs Boson.
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Figure 2.9: Final results of the Tevatron Higgs Search. The direct exclusion of the
149 < mH < 182 GeV mass range is shown by the region in which the observed limit
drops below 1 times the Standard Model cross-section [23].

The search for the Higgs Boson is one of the cornerstones of the LHC program and

for this reason both the ATLAS and CMS detectors are optimised for the reconstruc-

tion and measurement of potential Higgs decay products. On July 4th 2012 both

the ATLAS and CMS Collaborations announced the observation of a “Higgs-like”

Boson at a mass of approximately 125 GeV with a significance of 5.0σ [24] and 4.9σ

[25] respectively. This result was announced using the full 2011 dataset of up to 5.1

fb−1 and the then current 2012 dataset of up to 5.9 fb−1.
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Since the discovery by ATLAS and CMS, both collaborations have updated all

Higgs analyses as well as performing statistical fits on the combination of the anal-

yses. Both experiments use many of the decay modes shown in Figure 2.6. A brief

description of the more commonly used decay modes in Higgs searches is given be-

low as well as selected latest public results from these searches, as of January 2015.

Analysis of the decay modes is generally split up further, based on the particles

in the final state, into channels. There are many additional rare decay modes not

described here, which have not been part of the main search strategies during LHC

Run 1, such as decays to J/ψγ [26]. Results are generally described in terms of the

observed signal strength, µ̂, or the limit on the signal strength. The signal strength

is the measured multiple of the theoretical expected Standard Model cross section

times branching ratio for the process. The limit on the signal strength is expressed

as a 95% confidence level upper bound.

• γγ: Despite a very small branching ratio, the decay to γγ is one of the most

sensitive channels. This channel offers good resolution and a smooth con-

tinuum background of non Higgs γγ and events faking photons that can be

modelled. This channel can be fully reconstructed which, coupled with good

resolution, allows this channel to be used for mass measurements. ATLAS has

measured a signal strength of 1.17± 0.27 [27]. The Higgs mass is measured in

this channel, by ATLAS, to be mH = 124.51 ± 0.52 GeV [28]. The distribu-

tion of reconstructed Higgs mass that this value is extracted from is shown in

Figure 2.10. CMS has measured a signal strength in this channel of 1.14+0.26
−0.23

at a mass of mH = 124.70± 0.34 GeV [29].

• ZZ: The branching ratio to ZZ increases with increasing Higgs mass. The

Zs produced from this decay can be real or virtual. The ZZ decay modes are

cleaner and less background dominated than WW but have lower branching

ratios. This decay can be searched for in several channels based on the decays
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of the two Zs. In all the decay channels used, one of the Zs decays to charged

leptons as this allows for better triggering, reconstruction and sensitivity. The

channels used are ZZ → ````, ``νν, ``qq. The 4 lepton channel is often

considered to be the “Golden Channel” for LHC Higgs physics as it allows for

full reconstruction of the final state, good resolution and very low backgrounds,

making it suitable for measurements such as mass and spin/charge-parity.

ATLAS has measured a signal strength of 1.44+0.40
−0.33 in the 4 lepton channel,

the most sensitive of the ZZ decay modes, and exploiting multiple production

modes [30]. The Higgs mass is measured in this channel, by ATLAS, to be

mH = 125.98 ± 0.50 GeV [28]. The distribution of reconstructed Higgs mass

that this value is extracted from is shown in Figure 2.10. CMS has measured

a signal strength of 0.93+0.31
−0.27 at a mass of mH = 125.63± 0.44 GeV [31].

• WW : At masses above mH ∼ 130 GeV, Higgs decays to WW become dom-

inant. The W s produced from this decay can be real or virtual. This decay

can be searched for in different channels based on the decays of the two W s.

The main channels used are WW → `ν`ν and `νqq as other decays are too

difficult to reconstruct and extract a signal from. The case where both W s
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decay leptonically gives the best sensitivity but the presence of two neutrinos

in the final state prevents the system from being fully reconstructed and pre-

vents the channel being used for a mass measurement. At around twice the W

mass the decay to WW is almost 100%, a resonance effect, which has allowed

the TeVatron to achieve its best limits around this mass. CMS measures a

signal strength of 0.72+0.20
−0.18 in the `ν`ν channel [32] and ATLAS measures a

signal strength of 1.09+0.16
−0.15(stat.)+0.17

−0.14(syst.) [33].

• Zγ: In a narrow mass range around mH = 120−140 GeV, the Zγ decay mode

has a comparable branching ratio to γγ. Only the leptonic Z decays are used

so this significantly reduces the effective branching ratio to a level that makes

extracting a signal very challenging. This channel benefits from being able

to trigger and reconstruct the final state due to high transverse momentum

leptons and photon. ATLAS has placed a limit of 11.0 times the Standard

Model prediction for the cross section times branching ratio of the process at

mH = 125 GeV [34] and CMS has placed a better limit of 10.0 [35].

• ττ : At very low masses the ττ decay hass one of the largest branching ra-

tios. This channel is difficult to exploit due to the problems of triggering and

reconstructing τ leptons. Tau leptons can decay in several different ways, to

lighter leptons and to different multiplicities of pions and kaons, such that

several signatures must be searched for simultaneously. The wide resolution of

the di-τ mass reconstruction and the nearby Z → ττ peak make extracting a

signal very challenging. The combination of the different channels with the ττ

search provides a powerful way to observe that the Higgs decays to fermions.

CMS measured a signal strength of 0.78± 0.27 [36] whereas ATLAS measured

a signal strength of 1.42+0.44
−0.38 [37].

• bb̄: At low masses, up to mH ∼ 130 GeV, the dominant decay mode is to a

b-quark pair. This final state is made difficult to search for at hadron colliders

because it is a common signature of QCD multijet production processes. At

the LHC, QCD multijet bb̄ production has a cross-section approximately 9

orders of magnitude higher than that for Higgs production. This mode is only
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possible to exploit when considering one of the production modes that contains

other final state particles and not through direct gluon-gluon fusion, e.g. tt̄H

or V H. VBF is also possible but very hard due to the resulting all hadronic

final state. An important aspect of this channel is distinguishing between

b-quark induced jets and light quark jets. CMS measured a signal strength

of 0.67+1.35
−1.33 using the tt̄H,H → bb̄ channel [38] whereas ATLAS measured a

signal strength of 1.69±1.37 [39]. In the V H,H → bb̄ mode, ATLAS measured

a signal strength of 0.51+0.41
−0.37 [40] and CMS measured 1.0± 0.5 [41].

• µµ: Though offering a clean signature, this channel suffers from very large

backgrounds and has a very low branching ratio such that associated pro-

duction modes have too low an event yield to be useable. This decay mode is

mostly used in SuperSymmetric Higgs searches [42] that have modified branch-

ing ratios and properties. In the Standard Model scenario the branching ratio

is low enough to be difficult to distinguish from other standard model pro-

cesses such as Drell-Yan production. ATLAS has placed a limit of 7.0 times

the Standard Model prediction in this channel at mH = 125 GeV [43] whereas

CMS has placed a slightly weaker limit of 7.4 [44].

• cc̄ and gg: These modes have branching ratios at least an order of magnitude

lower than bb̄ but suffer from the same problems. The QCD background to

these processes is even larger than for bb̄ and it is harder to distinguish c or g

initiated jets from other jets than in the b-jet case. The branching ratio to gg

is higher than cc̄ due to additional contributions from virtual top quark loops

and bottom quark loops.

A summary of the observed signal strengths measured by each experiment as a mul-

tiple of the standard model expectation is shown in Figure 2.11. ATLAS measures

a combined signal strength of µ̂ = 1.30+0.18
−0.17 while CMS measures µ̂ = 1.00 ± 0.13

[45, 46].

After the discovery of what appears to be the standard model Higgs Boson, both
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the ATLAS and CMS collaborations made measurements of a variety of properties

including mass and couplings. These measurements mostly use the more sensitive

decay modes such as γγ, ZZ and WW . ATLAS uses the γγ and ZZ → 4` channels

to measure a Higgs mass of 125.36±0.37(stat.)±0.18(syst.) GeV [28] while CMS uses

a wider selection of channels to measure a mass of 125.03+0.26
−0.27(stat.)+0.08

−0.07(syst.) GeV

[47]. Several analyses have been performed to study the spin-parity of the observed

Higgs boson including the CMS distributions in the WW leptonic final state that

strongly favour JP = 0+ against a narrow resonance from JP = 2+ or JP = 0−

[32]. Indirect constraints from the CMS 4 lepton and 2 lepton 2 neutrino analyses

have placed an upper limit on the Higgs width of ΓH < 22 MeV [48], which is much

stricter than any direct measurement and only 5.4 times larger than the expected

standard model value. This limit is extracted by comparing the rates of on-shell

and off-shell Higgs production, both of which depend on the Higgs couplings but

only the on-shell production depends on the Higgs width. The ratio of these two

production rates gives access to the ratio of the Higgs width to the Standard Model

expected value.
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The Large Hadron Collider

The Large Hadron Collider (LHC) [49] is a particle accelerator based at CERN with

a full circumference of 27 km which runs beneath the French and Swiss countryside

at a depth of between 45 m and 175 m underground, in tunnels originally built for

the previous CERN accelerator, LEP. Much of the accelerator infrastructure used

by the LHC was part of CERN’s existing accelerator complex including the Super

Proton Synchrotron (SPS), which is the final stage before injection into the LHC.

The full CERN accelerator complex chain used for the LHC is shown in Figure 3.1.

The LHC was designed to accelerate two beams of protons to 7 TeV per proton and

then collide them at a centre-of-mass energy,
√
s, of 14 TeV. At this energy protons

will be travelling at 99.999999% the speed of light and make 11,000 full circuits of

the LHC ring per second. The beams of protons are not in a continuous stream

but instead organised in bunches containing up to 1011 protons. The LHC design

parameters are for 2808 bunches of protons with a spacing between bunches of 25

ns. The LHC can also be used to collide Lead ions at energies of up to 5.5 TeV per

24
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nucleon pair [50].

Figure 3.1: Schematic of the full CERN accelerator complex. c© 2014 CERN.

The instantaneous luminosity of a colliding beam experiment, L, can be written in

terms of the machine parameters as:

L =
fnN2

A
(3.1)

where f is the frequency of beam circulation, n is the number of bunches circulated,

N is number of particles per bunch (assuming equal bunches in each direction) and

A is the transverse area of each bunch crossing. It is convenient to describe an

accelerator by its luminosity, as the rate, W , of a certain type of event can then be

determined as W = L× σ where σ is the cross section of a particular process. The

LHC is designed to have a peak instantaneous luminosity of 1034 cm−2s−1, at which

processes with cross sections of 100 pb will have a production rate of 1 Hz, giving
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the LHC experiments great experimental reach [51].

The LHC has 4 main detectors placed at different interaction points: LHC beauty

(LHCb) [52], A Large Ion Collider Experiment (ALICE) [53], Compact Muon Solenoid

(CMS) [54] and A Toroidal LHC Apparatus (ATLAS) [55]. LHCb was designed to

make precise measurements to probe CP violation, asymmetries between matter

and antimatter, in the b-quark sector. ALICE was primarily designed to search for

the Quark Gluon Plasma in Heavy Ion (HI) collisions. CMS and ATLAS are both

designed to study a wide range of physics but particularly for searches for the Higgs

Boson and physics beyond the Standard Model. The positions of the 4 detectors on

the LHC ring are shown in Figure 3.2.

Figure 3.2: Underground view of the LHC [56].

After an unsuccessful attempted start in September 2008, the LHC started colliding

beams of protons in November 2009. The early collisions occurred with proton

beams at their injection energy, giving a centre-of-mass energy of 900 GeV with an

increase to 2.36 TeV, a record for a collider, by the end of 2009. It was decided

that it was not safe to run the LHC machine at 14 TeV, as originally planned, until

upgrades and additional quench protection systems had been installed.
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In early 2010 the LHC was recommissioned to accelerate protons to 3.5 TeV, provid-

ing collisions at
√
s = 7 TeV. The LHC ran at this energy for the duration of 2010

and 2011, providing 48.1 pb−1(2010) and 5.46 fb−1(2011) of data to both ATLAS

and CMS. For 2012 running the beam energy was increased to 4 TeV per proton,

giving a total centre-of-mass energy of 8 TeV. During 2012 operation 22.8 fb−1 of

data were provided to ATLAS and CMS. The luminosities delivered to ATLAS by

the LHC during each year of running are shown in Figure 3.3. ALICE and LHCb

received a smaller amount of data due to the process of luminosity levelling, which

deliberately reduces the instantaneous luminosity received by each experiment. The

LHC ceased operation in early 2013 to perform upgrades to allow operation at a

centre-of-mass energy of up to 14 TeV.
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The ATLAS Experiment

The ATLAS detector [55], shown in Figure 4.1, is located at point 1 on the LHC

ring and is the largest detector ever built at a collider, being 44 m long, 25 m in

diameter and weighing over 7000 tons. Design and construction of the detector has

taken thousands of people almost 20 years to complete. The main strengths of AT-

LAS are excellent particle identification, large muon acceptance, highly performant

calorimeters and good vertex reconstruction. The ability to accurately reconstruct

muons is an especially important property for ATLAS as the cleanest channels for

many new physics are those containing high energy muons.

28
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ATLAS follows the typical design for colliding beam detectors, often described as

an “onion”, whereby the detector is segmented into layers of different types of sub-

detectors, each layer fully surrounding those which are closer to the interaction

point. By combining all the separate detector components, it is possible to directly

detect and measure all stable particles except for neutrinos. The penetration and

visibility of different types of particles is shown in Figure 4.2.

Figure 4.2: Visibility of particles in sub-detectors [56].

ATLAS sub-detectors and events within ATLAS are described using a right-handed

cylindrical co-ordinate system consisting of azimuthal angle around the beam axis,

φ, radial distance from the beam axis, r, and pseudorapidity, η, which is defined as:

η = − ln

[
tan

(
θ

2

)]
, (4.1)

where θ is defined as the elevation from the beam line axis. The angle φ is ori-

ented such that φ = 0 points towards the centre of the LHC ring. Pseudorapidity

increases from 0 when perpendicular to the beam axis up to infinity when on the

beam axis. The pseudorapidity difference between two particles, ∆η, is a Lorentz

invariant quantity. Pseudorapidity is a convenient unit to use because particle fluxes

are approximately constant per unit pseudorapidity at hadron colliders.
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Pseudorapidity is the high energy limit of the relativistic quantity rapidity, which is

defined as:

y =
1

2
ln
E + pz
E − pz

, (4.2)

where E is the total energy of a given object and pz is the corresponding momentum

along the z axis, the beam pipe. The orientation of z is such that z > 0 covers the

A-side of the detector (facing towards Geneva) and z < 0 covers the C-side (facing

towards the Jura department of France).

The distance between two particles in ATLAS or the size of a cone around a particle

is defined in terms of ∆R:

∆R =

√
(∆φ)2 + (∆η)2. (4.3)

where ∆φ and ∆η are the angles in φ and η respectively.

4.1 Inner detector

The Inner Detector of ATLAS is made up of three sub-detectors, which are shown in

Figure 4.3, inside one another and slotted inside a solenoidal magnet. The different

sub-detectors are used in combination with each other to track the paths of charged

particles as they are bent within the magnetic field. Using precise determination of

the positions of hits in the different sub-detectors along with offline minimisation

algorithms allows full reconstruction of tracks. The curvature of these tracks caused

by the magnetic field allows the momentum of the particle responsible for a given

track to be calculated and the direction of curvature gives the charge of the parti-

cle. Particles must have momentum of at least 0.5 GeV for a measurement to be

made due to the strength of the magnetic field. When the LHC reaches design pa-

rameters, approximately 1000 charged particles will be radiated from the interaction

point during every bunch crossing, due to multiple collisions, which necessitates very
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fine granularity tracking in the Inner Detector. The fractional tracking resolution is

required by design to be σpT/pT = 0.05%pT

⊕
1% [55].

Figure 4.3: Cross-sectional views of the Inner Detector [56].

The Pixel detector is the first sub-detector moving out from the beam axis and cov-

ers the area from a radius of about 5 cm to a radius of about 12 cm within |η| < 2.5.

The Pixel detector is composed of three layers of semi-conducting silicon pixels

which are each of size 50 µm by 400 µm. There are in total over 80.4 million pixels

spread across the three layers. The small pixel size gives extremely precise spatial

information that is required at this distance from the beam axis to reconstruct both

the primary vertex where a collision occurred and any secondary vertices caused

by unstable particles which travel a distance before decaying, such as τ leptons or

b-hadrons. Identification of b-hadrons is very important for a wide range of ATLAS

physics topics such as Top quark measurements and searches for H → bb̄. The fine

granularity of the Pixel detector means that it has the best resolution of the Inner

detector sub-detectors. The radiation flux hitting the pixel detectors will cause sig-

nificant damage, creating additional noise and reducing the number of points on each

track, which reduces the precision of measurements. The Pixel detector is the part

of ATLAS most likely to require replacement due to radiation damage. During the

long shutdown after Run I ATLAS installed the Insertable B-Layer (IBL) [57]. The

IBL is an extra layer of silicon pixels at a radius of 2.5 cm from the beam pipe, closer

than the Pixel detector, designed to improve the precision of tracking measurements.
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Around the Pixel detector is the Semi-Conductor Tracker (SCT), which covers the

area from a radius of about 25 cm out to about 55 cm within |η| < 2.5. The SCT is

constructed from approximately 6.3 million silicon strips of width 80 µm and length

about 12 cm lying parallel to each other on modules. It is impossible to know how

far along its length an individual strip has been hit so a single layer of strips gives

information only in one dimension. To obtain a two dimensional measurement lay-

ers are arranged in pairs, overlapping at an angle of approximately 40 mrad so that

the intersection of two strips receiving a hit marks the position of a track. With

eight layers of the SCT, arranged in pairs, each particle should give four full spatial

points to form a track. SCT modules are mounted both on a cylindrical construction,

surrounding the interaction point in φ, and on endcap wheels to cover the forward

regions. The arrangement of pairs of SCT layers greatly improves the resolution of

the strips but still does not give as a resolution as narrow as for the Pixel detector.

The Transition Radiation Tracker (TRT) is the outer layer of the inner detector and

extends from a radius of approximately 55 cm out to approximately 1.1 m in the

region |η| < 2.0. The TRT is made up of roughly 350,000 straw tubes, of length 144

cm and diameter 4 mm, filled with gaseous Oxygen, Xenon and Carbon Dioxide.

The straws are densely packed in layers such that each track should leave deposits

in an average of 36 straw tubes. The TRT increases the precision of the momen-

tum resolution of tracks by providing a very large number of measurements and

extending the length over which a track is measured. Very thin sheets of aluminium

(approximately 0.2 µm) are placed between the tubes, which cause charged parti-

cles to emit photons, known as “transition radiation” at a wavelength dependent

on the particle’s relativistic boost. The large size of the tubes gives the TRT the

poorest individual resolution of the sub-detectors within the Inner detector. As the

luminosity of the LHC increases, the usefulness of the TRT will decrease due to the

mean occupancy per tube rising above 1 at a luminosity of 1034 cm−2s−1 [55].
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4.2 Calorimetry

ATLAS makes use of two calorimeters, shown in Figure 4.4: an Electromagnetic

Calorimeter to identify and measure the energies of electrons and photons and a

Hadronic Calorimeter to identify and measure the energies of hadrons. Both AT-

LAS calorimeters are sampling calorimeters, which means that they use one dense

material, the absorber, to initiate showers of particles from a high energy incoming

particle and another material, the sampler, to collect the energy deposited and the

characterise the shape of the shower. The two different materials are placed alter-

nately in layers to build up the calorimeter. Both calorimeters require high granu-

larity to be able to separate the showers from two particles entering the calorimeters

close together.

The dominant processes of shower production in the electromagnetic calorimeter are

bremsstrahlung, emission of photons by the acceleration of charged particles, and

pair production from the conversion of a photon. These two processes combine to

develop an electromagnetic shower with a characteristic shape that is different in

width- for incoming electrons and photons. Absorbers are characterised by their

radiation length, X0, the mean thickness of material in which an electron will lose

all but a fraction 1/e of its energy by bremsstrahlung.

Hadronic shower production is far more complex than electromagnetic shower pro-

duction due to the complexity of processes involved and that some processes will

also produce an electromagnetic core within the shower. The nuclear interactions

involved in hadronic showers are less well understood than electromagnetic inter-

actions and can fluctuate greatly in terms of the energy lost and the number of

non-hadronic particles produced. This complexity and poorer understanding leads

to a poorer energy resolution than for an electromagnetic calorimeter [58]. The nu-

clear interaction length, λ, is the mean distance in which a hadron will lose all but
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a fraction 1/e of its energy by strong interaction processes and is typically, though

not always, much larger than a material’s radiation length.

For both calorimeters, offline algorithms are used to convert the pattern of activated

calorimeter cells into a shower shape. From the shape and magnitude of signals ob-

served, the energy of the particle which initiated the shower can be calculated. In

the case of multiple particles travelling close together, more complex algorithms are

required to resolve the different shower shapes. The shape of a shower can also

provide some particle identification, for example, by complementing other detector

information to distinguish between photons and electrons.

Figure 4.4: The ATLAS Calorimeters: An electromagnetic calorimeter, shown in
orange, and a hadronic calorimeter, shown in grey and blue [56].

The ATLAS electromagnetic calorimeter is constructed from layers of lead to act

as an absorber and cooled Liquid Argon (LAr) as a sampling material. Lead has a

radiation length of 0.5612 cm [1]. To reduce dead material in front of the barrel

section of the calorimeter it is placed within the solenoid’s cryostat. The barrel

section of the calorimeter is made from two sections joined at |η| = 0 and covers

the region |η| < 1.475 while two coaxial wheels make up the endcaps which cover

1.375 < |η| < 3.2. The electromagnetic calorimeter has a depth in the barrel of
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more than 22 radiation lengths and more than 24 in the endcaps [59]. The overlap-

ping region requires careful calibration as showers will not go the full depth of the

calorimeter in either section of the calorimeter, so information from both must be

combined using offline algorithms. To improve the coverage and symmetry in φ the

calorimeter layers are constructed as accordions as opposed to just being flat sheets

[60]. The ATLAS design requirement is for the fractional electromagnetic shower

resolution to be σE/E = 10%/
√
E
⊕

0.7% [55].

The hadronic calorimeter is constructed from layers of steel absorber and scintil-

lating plastic tiles for sampling in the region |η| < 1.7, but uses copper as the ab-

sorber and LAr for sampling in the endcaps, which cover the region 1.5 < |η| < 3.2.

Copper has a nuclear interaction length of 15.32 cm [1], lower than the 17.59 cm

of lead [1], which allows the hadronic endcap calorimeter to be constructed more

compactly. The Tile section of the calorimeter is partitioned into a barrel section

covering |η| < 1.0 and an extended barrel on each side which covers 0.8 < |η| < 1.7.

The hadronic calorimeter is designed such that the electromagnetic and hadronic

calorimeters combined have a depth of at least 10 interaction lengths throughout.

The ATLAS design requirement is for the fractional hadronic shower resolution to

be σE/E = 50%/
√
E
⊕

3% [55].

Between 3.2 < |η| < 4.9 both the electromagnetic and hadronic calorimeters are

replaced by the Forward Calorimeter (FCal), which is positioned within the cryostat

of the Hadronic Calorimeter endcaps. The FCal uses LAr, the same material used

in the electromagnetic calorimeter, as a sampling material but uses two different

metals as absorbers. The first module of the FCal uses Copper and is primarily

optimised for measuring the electromagnetic component of a shower while the sec-

ond and third modules use Tungsten and are designed for hadronic measurements.

The FCal is a total of 10 interaction lengths throughout. The ATLAS design re-

quirement is for the fractional resolution in the FCal to be σE/E = 100%/
√
E
⊕

10% [55].
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4.3 Muon Spectrometer

The outside of ATLAS is entirely surrounded by the Muon Spectrometer, cover-

ing the full length of 44 m and diameter of 25 m, which is separated into three

cylindrical layers in the barrel region plus three wheels at either end to cover the

forward/backward regions, as shown in Figure 4.5. The muon spectrometer is con-

structed from four different types of instrument: Cathode Strip Chambers (CSC) and

Monitored Drift Tubes (MDT) are used for accurate spatial measurements to recon-

struct a full muon trajectory, but their slow read out necessitates the use of Resistive

Plate Chambers (RPC) and Thin Gap Chambers (TGC) for triggering and matching

of a particular muon to an LHC bunch crossing. The fast response instruments, the

RPC and TGC, are sandwiched around the more spatially accurate instruments, the

CSC and MDT. Coincidences in the RPCs and TGCs are used to quickly postulate the

presence of a muon. The design of the muon spectrometer ensures nearly full cov-

erage of ATLAS and provides three spatial and temporal measurements per muon

passing through. This allows a track to be precisely reconstructed and a radius of

curvature to be calculated. The ATLAS design requirement is for the fractional

tracking resolution in the muon spectrometer to be σpT/pT = 10% at pT=1 TeV[55].

Figure 4.5: The ATLAS Muon Spectrometer consisting of 4 different types of muon
chambers [56].
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4.4 Magnet System

ATLAS uses a combination of two magnetic systems to bend the paths of charged

particles so that their momenta may be measured. The Inner Detector is completely

surrounded by a 5.3 m long solenoidal magnet found at a radius of 1.25 m from the

beam axis. The magnetic field produced by the solenoid has a strength of 2 Tesla

and runs parallel to the beam axis to curve the paths of tracks in the Inner Detec-

tor. The paths of muons travelling through the Muon Spectrometer are bent by the

toroidal magnet system.

The use of toroids is fairly uncommon in High Energy Physics experiments where

the more conventional approach is to place everything within the return flux of the

solenoid. The size of the ATLAS Calorimeters and Muon Spectrometer make this

option unattractive as the bending power would neither be strong enough at the

required distances from the interaction point nor extend far enough forward in η.

A second solenoid around the entire detector would be prohibitively expensive so

a toroidal system was determined to be the most performant option within budget

[61]. The ATLAS Toroid system is made up of a large barrel, in the region |η| < 1.0,

consisting of coils housed in 8 air core cryostats (as shown in Figure 4.6) and 2 end-

caps in the region 1.4 < |η| < 2.7, which are slotted into the barrel. In the region

1.0 < |η| < 1.4 the magnetic field is provided by a combination of both systems.

The magnetic field produced by the toroidal system has an average strength of 0.5

Tesla although there is a significant variation of the field strength. The strength of

the magnetic field in the direction of the beam axis, in Tesla, formed by the combi-

nation of the Solenoid and Toroid is shown in Figure 4.7.
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Figure 4.6: ATLAS Barrel Toroid before insertion of Calorimeters and Inner Detec-
tor [56].

4.5 Trigger

At design energy and luminosity there will be a bunch crossing interval of only 25

ns and an expected average collision rate of 23 events per bunch crossing. The

full zero-suppressed binary data for each event totals approximately 1.6 Megabytes

which equates to a raw data rate of approximately 1 Petabyte per second. This is

unfeasible, both because too much storage space would be required and because the

speed of read-out would be beyond the capabilities of current technologies. Han-

dling this rate necessitates a highly selective trigger that reduces the event rate to

a manageable level while still preserving events that are expected to contain inter-

esting physics processes. During the 2010 - 2012 running period (LHC Run I) the

bunch crossing interval was 50 ns with a collision rate of up to 40 events per bunch

crossing but taking a wide range of values.

The full trigger must reduce the LHC bunch crossing rate of 40 MHz down to an

event rate of only 200-400 Hz [55], the limit that can be processed and reconstructed

properly for storage to disk. The ATLAS Trigger is split into Level 1, Level 2 and
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(m)

Figure 4.7: Field map showing strength of the ATLAS magnetic field in the z
direction, along the beam axis [62]. The x and y directions represent the horizontal
and vertical dimensions of the ATLAS detector. The units for the z axis is Tesla.

the Event Filter. A schematic diagram of the trigger layout is shown in Figure 4.8.

All trigger levels can have a pre-scale set for each threshold where a pre-scale of x

will mean that only a randomly sampled proportion 1
x

passing that threshold will be

selected. This allows very high rate processes to be recorded without swamping the

trigger and allows the trigger settings to be adjusted to changing beam conditions.

The Level 1 trigger consists of three sections: The Level 1 Calorimeter Trigger

(L1Calo), the Level 1 Muon Trigger (L1Mu) and the Central Trigger Proccessor (CTP).

All of the Level 1 systems are built from custom electronics and use reduced granu-

larity from the detector, seeking only to recognise individual physics objects and not

to reconstruct event topologies. The time between events is very small so a tech-

nique called pipelining is used whereby multiple events are stored within on-board

electronics allowing more than the time between events for the trigger to act. Events

must be processed by Level 1 within 2.5 µs, of which about 1µs is taken by cable

length, otherwise an event will fall off the end of the pipeline and be lost. Level 1 is

designed to reduce the rate down to a maximum of 75 kHz.
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Figure 4.8: Schematic diagram of the ATLAS Trigger systems [63].

L1Mu uses data from the Muon Spectrometer to identify muons and pass information

on their positions and momenta to the CTP. L1Calo, which will be described in more

detail in Chapter 5, uses information from all the calorimeters to identify electrons,

photons, taus and jets as well as to measure large missing transverse energy (Emiss
T )

and large total transverse energy and passes their information to the CTP. The

CTP compares information received from L1Mu and L1Calo to the preloaded trigger

menu, which specifies the features and thresholds that are likely to be of interest for

physics analyses. If an object is found that passes the required thresholds of a trig-

ger item then the CTP will send a Level 1 Accept signal to read the event data out

into Level 2. The CTP can also check for combinations of items such as an electron

and Emiss
T to select W decays. L1Mu and L1Calo transmit Regions of Interest (RoI),

which specify the coordinates of the Level 1 objects and a list of thresholds passed.

Level 2 and the Event Filter (EF) are collectively known as the High Level Trig-

ger (HLT) and run on standard large processor farms. Level 2 takes RoI from Level

1 and uses information from the RoIs and the surrounding areas to further reduced

the event rate. This is done both by refining the identification of individual physics
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objects and looking for combinations/correlations of different RoI. Level 2 reduces

the event rate down to approximately 4 kHz with a mean processing time of around

40ms per event, though the number of RoI significantly increases the processing time.

The Event Filter is designed to reconstruct the full event topology and then deter-

mine through the use of complex algorithms whether events pass one of the menu

items. These menu items can contain requirements about individual objects or more

complex multiple object requirements. EF menus are constructed to try to ensure

that there is enough data available for all physics analyses, generally by allocating

bandwidth to each physics group. The EF must reduce the bandwidth to around

200-400 Hz with a mean processing time of 4 seconds [64].

Data events are recorded to different streams depending on the types of trigger items

found. For instance events triggered by muons are recorded to the Muon stream while

events triggered by jets, taus or high Emiss
T are recorded to the JetTauEtmiss stream.

There is a degree of overlap in the data recorded in different streams, because the

streams are inclusive and each event may pass triggers belonging to more than one

stream.

4.6 Luminosity

It is important, for ATLAS physics analyses, that the total luminosity of a dataset,∫
Ldt, is known. To determine this, ATLAS was designed to be able to measure the

instantaneous luminosity, as defined in Equation 3.1. The instantaneous luminosity

can be defined experimentally as:

L =
Rinel

σinel
, (4.4)
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Where Rinel is the rate of inelastic collisions and σinel is the proton-proton inelastic

cross section. This can be rewritten in terms of the machine parameters as:

L =
µnbfr
σinel

, (4.5)

Where fr is the revolution frequency of the collider, nb are the number of bunches

crossing and µ is the average number of inelastic interactions per bunch crossing.

The machine parameters, nb and fr, are both known so techniques which can measure

the ratio µ/σincl can be used to calculate the luminosity. Several sub-detectors, such

as the Minimum Bias Trigger Scintillator (MBTS) and parts of the inner detector, are

able to detect the products of inelastic interactions and so can be used for luminosity

calculations. ATLAS uses event counting methods [65] in which selection criteria,

based on specific detector responses, are used to determine wether each LHC bunch

crossing contains at least one inelastic collision. The selection efficiency for such

events, ε, can be used to rewrite Equation 4.5 in terms of the average number of

visible inelastic interactions per bunch crossing, µvis = εµ, and the visible inelastic

cross section, σvis = εσinel as follows:

L =
µnbfr
σinel

=
µvisnbfr
εσinel

=
µvisnbfr
σvis

. (4.6)

The visible event rate, µvis, is an experimentally measured quantity while the value

of σvis is determined by the calibration of the method and sub-detector used. This

calibration has a dependence on the pseudorapidity and particle type of the collision

products. The absolute scale of σvis is determined by scanning for collision activity

as the beam separation is adjusted which a technique known as a Van der Meer

scan.
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Level 1 Calorimeter Trigger

As outlined in Section 4.5, the ATLAS trigger must greatly reduce the event rate,

with the largest reduction comeing from Level 1. The Level 1 Calorimeter Trigger

(L1Calo) is responsible for using the information from all the calorimeter subsys-

tems, but at reduced granularity (by merging cell information), to identify electrons,

photons, taus and jets as well as measure missing transverse energy (Emiss
T ) and total

transverse energy.

The L1Calo system divides the calorimeter cells into 7168 towers, half in each of the

electromagnetic and hadronic calorimeters, which are of average size ∆η × ∆φ =

0.1 × 0.1 but increase in size with increasing η. The L1Calo system is constructed

from custom-built electronics with processing performed by FPGAs, a type of mi-

crochip with speed comparable to an application-specific chip, but with the ability

to modify its internal logic into different digital circuits. The L1Calo electronics are

located in the USA15 cavern, next door to the main cavern, protected from the high

44
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radiation environment in the main cavern by the thick cavern walls. Signals are

carried from the ATLAS sub-detectors to L1Calo along cables which are up to 70

m in length. The main processes performed by L1Calo are split into three different

sets of modules, a diagram of which is shown in Figure 5.1. The Pre-Processor Mod-

ule (PPM) transforms the incoming data from the calorimeters into a form which can

be used by the Cluster Processor Module (CPM) and Jet/Energy Sum Module (JEM)

to identify physics objects of interest [66].
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Figure 5.1: Schematic design of the Level 1 Calorimeter Trigger [63].

5.1 Pre-Processor Module

The signals entering the PPM are analogue voltage pulses from individual trigger tow-

ers which have been summed in depth (the different layers of a particular calorimeter)

across all cells making up a tower. The analogue pulses are then calibrated using

gains to transform total energy to a common ET, the energy associated with mo-

mentum in the transverse plane. The calibration depends on the position of towers



46 CHAPTER 5. LEVEL 1 CALORIMETER TRIGGER

within the calorimeter.

The PPM must first turn the analogue signals coming from the calorimeter into

digital logic pulses, which are required for the rest of the PPM and CPM/JEM which

all run on digital electronics. This is performed by 10 bit Flash Analogue to Digital

Converters (FADCs) which sample the analogue pulses at 25 ns intervals (the bunch

crossing interval). A fine timing adjustment of between 1 and 25 ns is applied to

each signal to correct for any differences in cable length or other electronic delays.

Five 25 ns time slices are read out at a time from the PPM.

The PPM then performs an operation called Bunch Crossing Identification, which

is described more fully in Section 5.2, to associate the signal with a particular LHC

bunch crossing and then passes the signal to the Look Up Table (LUT). The LUT

uses the central ADC slice (the digital version of the calorimeter signal) to make

an ET estimation. The pedestal associated with each tower is subtracted and then

a noise threshold is applied to prevent swamping L1Calo with noise signals. The

pulse height is then calibrated to an 8-bit ET value. The LUT can also be used to

mask towers by setting their output to zero to cancel the effect of bad towers.

5.2 Bunch Crossing Identification

Bunch Crossing Identification (BCID) is a technique which uses a pulse shape (the

five time slices from the FADC) to associate a pulse from a single trigger tower to

a particular LHC bunch crossing. This is not a trivial process because pulse shapes

are several bunch crossings wide. The simplest approach of selecting the peak value

is not the most effective as real physics pulses have varying shapes as well as a noise

component that can be better discriminated by a filter. The method of BCID is

different for saturated and non-saturated signals where saturated signals are above
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250 GeVand exhaust the 8 bits allocated for their storage. The BCID system is

shown in Figure 5.2.

Figure 5.2: Schematic diagram of the FIR filter and peak finder implemented within
the PPM [67].

For saturated pulses there may be several time slices which saturate the ADC value

so there is not even a single peak to use. In this case time slices from the rising edge

are compared to a low and a high threshold to determine the expected shape of the

pulse and thus determine the true peak. The slices from the rising edge of the pulse

are used instead of the falling edge as these are less distorted. For the saturated

case it is not possible for the LUT to assign correct ET values so all saturated pulses

are given a value of 255 GeV, the maximum that can be stored in 8 bits when the

smallest stored bit is equivalent to 1 GeV.

For non-saturated pulses a combination of a Finite Impulse Response (FIR) filter

and a peak finder is used for BCID. The five time slices of ADC data are passed
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through the FIR filter which multiplies each time slice by its corresponding FIR

coefficient to give the output, foutput as:

foutput =
5∑

i=1

aidi (5.1)

where di are the ADC values of each time slice and ai are the FIR coefficients as

shown in Figure 5.2. The output value for each bunch crossing is then compared to

the output in neighbouring bunch crossings. The FIR output must be greater than

the output from the previous bunch crossing and at least as great as the next bunch

crossing to pass BCID. If the BCID flag is not set then a pulse is automatically ze-

roed. The values of the FIR filter coefficients are optimised to enhance true signals

while suppressing noise. Filter coefficients currently take the same values for each

tower within particular regions, e.g. hadronic FCal, which is known as a “Common”

filter. The alternative is to set coefficients individually for each tower, which is a

small improvement over the “Common” case but requires a lot of calibration and

increases the complexity of the system [68].

5.3 Cluster Processor and Jet/Energy Processor Modules

The Cluster Processor Module (CPM) and Jet/Energy Processor Module (JEM)

both receive ET values, aligned to the correct bunch crossing, from the PPM and

perform algorithms on the information from multiple towers to identify physics ob-

jects. The two systems have many similar features.

The CPM is designed to identify electrons, photons and hadronically decaying taus.

These objects are also expected to form fairly narrow clusters with little activity

nearby, so they can be distinguished from jets by looking for large ET deposits in

single towers or small groups rather than spread across many. For electrons and
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photons the CPM uses a sliding window algorithm, shown in Figure 5.3, to identify

candidates. The algorithm selects a 2 × 2 core of electromagnetic trigger towers

summed with the hadronic core behind, an RoI, which are a local ET maximum

(higher than windows of the same size in the surrounding area) and in which one

of the four possible horizontal or vertical electromagnetic tower sums is above a

threshold. The cluster can then be required to pass certain isolation requirements

such that the electromagnetic isolation ring, hadronic isolation ring and hadronic

core (marked as yellow, pink and red in Figure 5.3) are below preset thresholds. For

taus the RoI is defined in the same way but the sums to identify taus use the combi-

nation of both the electromagnetic cluster and the hadronic core but the algorithm

is otherwise the same. As a result of this, the hadronic core isolation requirement

is removed. The triggers handled by the CPM cover the region |η| < 2.5, which

is as far as the electromagnetic calorimeter and inner detector can make precision

measurements.
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Figure 5.3: Diagram of the L1Calo sliding window algorithm used within the CPMs
[63].

The JEM is designed to identify jets as well as calculate Emiss
T , total ET and Emiss

T
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significance (Emiss
T compared to total ET, a vector versus scalar sum). The algorithm

used to identify jets is similar to the sliding window algorithm used by the CPM.

Jet elements are constructed as sums of 2×2 trigger towers, summed across both

electromagnetic and hadronic calorimeters. The algorithm then calculates ET sums

within windows made from 2×2, 3×3 or 4×4 jet elements. The ET sums are required

to pass thresholds that are different for the different candidate jet cluster sizes. The

window used must surround the 2×2 set of jet elements that represents a local

maximum, to avoid double counting, and this defines the jet RoI. The jet triggers

cover the region |η| < 3.2. The algorithm also uses the region 3.2 < |η| < 4.9 to

trigger on forward jets, though these are generally less reliable due to the large fluxes

of particles in the forward region and large total energy deposition. The total ET

sum and vectorial Emiss
T sum include all towers out to |η| = 4.9.



CHAPTER 6

Bunch Crossing Identification

As shown in Section 5.2, the BCID system is very important within L1Calo. If

calorimeter deposits are not accurately associated with LHC bunch crossings then

the L1Calo algorithms in the later modules will not have the full information with

which to identify features. It is expected that the efficiency of BCID will be approx-

imately 100% for highly energetic towers, around the thresholds of triggers used for

narrow single objects such as electrons. Objects such as jets or calculated quantities

such as Emiss
T are built from many lower ET towers where the efficiency may be lower.

The ability to resolve Emiss
T and jet ET accurately is highly reliant on the ability to

match many small calorimeter deposits to a single bunch crossing. To understand

these trigger quantities, as well as the general system performance, it is important

to quantify the efficiency of BCID in data. The aim of the study presented here is

to characterise the performance of the BCID implementation in L1Calo and identify

any unexpected effects. The efficiency can be described in terms of a turn-on curve

showing the increasing efficiency with increasing ET but can also be split up into

51
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on-off curves based on a categorisation by L1Calo pulse height as will be shown in

Section 6.3.

6.1 Methodology

This study has been performed using L1Calo ntuples, a data format derived from

one of the core ATLAS data formats, AOD [69]. The L1Calo ntuples contain infor-

mation from both the electromagnetic and hadronic layers of trigger towers where at

least one layer records either an ET greater than 0.5 GeV or an ADC value greater

than 36 counts, 4 counts above the mean pedestal value. The ADC value is the

height of the digital pulse as described in Section 5.1. The selection criteria cause

a significant bias in the region ET < 0.5 GeV. The ntuples are analysed within the

L1Calo Ntuple Analysis framework [70].

The dataset used for this study was recorded during the 2010 LHC HI collisions.

A comparison between different runs is performed for consistency but the majority

of the results are obtained using a single run, 169884, as this run contains better

statistics than the majority of other runs and was recorded with stable, calibrated

beam and trigger settings. The other runs used for consistency checks were 168759,

168865, 168875 and 169045.

Data recorded during HI collisions is more useful for this study than proton-proton

collisions because the collisions are better separated in time and the statistics are

much larger in the ET region in which the efficiency turns on and approaches 100%.

As this study relies only on the offline ET values and Bunch Crossing Identifica-

tion (BCID) decisions based on ADC values, it should not matter whether Heavy

Ions or protons are in the beam pipe, only what charge is deposited in the trigger

tower. There are, however, differences in angular multiplicities and ET spectra be-
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tween HI and proton collisions. The ET spectrum in particular is softer in HI, which

causes efficiencies summed over a range of ET to be reduced by the large flux of low

ET deposits.

Figure 6.1: Atlantis event display of a Heavy Ion event showing the huge flux of
low ET particles and leaving deposits in almost all trigger towers. The bottom right
portion of the display shows the calorimeter deposits on an un-rolled layout of the
calorimeters. ATLAS Experiment c©2014 CERN.

The events used are those which are found in the MinBias stream, used for recording

a random selection of bunch crossings containing collisions but minimally biased

towards the physics processes involved, and are required to have an L1 MBTS trigger

accept1 and a primary vertex with at least 3 tracks. These requirements ensure

that the events used are from real HI collisions rather than cosmic rays or beam halo

muons. Individual trigger towers are then selected by requiring that a positive offline

ET is recorded and that the tower is not marked as “Bad” or “Dead/Disabled” in

the offline database. The BCID efficiency binned in offline calorimeter ET, εET , is

then calculated as the number of tower deposits containing a non-zero ET and a

1The Minimum Bias Trigger Scintillator (MBTS) sits in front of each endcap calorimeter and so
is used to trigger collision events by detecting the remnants of protons that have been scattered in
the forward direction. L1 MBTS denotes an Minimum Bias Trigger Scintillator (MBTS) trigger has
been fired at Level 1.
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BCID flag (a signal saying that the tower has passed BCID), divided by the number

containing a non-zero ET:

εET =
No.Calo Cell ET & BCID > 0

No.Calo Cell ET

(6.1)

The efficiencies are calculated separately for different sections of the calorimeters:

the Barrel region in the range |η| ≤ 1.4 (1.5) for the electromagnetic (hadronic)

calorimeter, the Inner Endcap in the range 1.5 < |η| ≤ 2.5, the Outer Endcap in the

range 2.5 < |η| ≤ 3.2 and the Forward Calorimeter in the range 3.2 < |η| ≤ 4.9. In

the electromagnetic calorimeter the crack region 1.4 < |η| ≤ 1.5 has been excluded

from results. The crack region is unreliable because a cluster will be partially con-

tained within both the Barrel and Inner Endcap, so careful timing and calibration

is required to use the two sets of signals together. In 2010 this had not properly

been performed but cabling was added during the Winter 2010-2011 shutdown to

improve the situation.

6.2 Results

The BCID efficiency values measured for electromagnetic and hadronic calorimeter

trigger towers are summarised in Tables 6.1 and 6.2 for low ET only, separated into

different partitions.The efficiency as a function of calorimeter ET is shown in Figure

6.2 for run 169884 in both the electromagnetic and hadronic calorimeters. Efficien-

cies are shown as a fraction. All of the errors on efficiency values are below 0.001.

It can be seen that all partitions in both calorimeter layers become more or less

fully efficient (plateaued above 98%) by ET = 3 GeV. All partitions follow a similar

turn-on curve shape but the gradient of the curve varies. In the barrel regions max-

imum efficiency is only achieved at higher ET than in the other region because the
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ET Values / GeV 0.5 1.0 1.5 2.0 2.5 3.0

Barrel 0.50 0.71 0.87 0.94 0.98 0.99
Inner EC 0.62 0.85 0.94 0.98 0.99 0.99
Outer EC 0.74 0.93 0.98 0.99 1.00 1.00
FCAL1 0.79 0.93 0.98 0.99 1.00 1.00

Table 6.1: BCID Efficiency for different electromagnetic partitions.

ET Values / GeV 0.5 1.0 1.5 2.0 2.5 3.0

Barrel 0.45 0.70 0.86 0.93 0.97 0.98
Inner EC 0.58 0.84 0.94 0.97 0.99 0.99
Outer EC 0.73 0.91 0.97 0.99 0.99 1.00
FCAL23 0.64 0.87 0.95 0.98 0.99 0.99

Table 6.2: BCID Efficiency for different hadronic partitions.

effect of noise is greatest here. Noise on the total energy E should be approximately

constant in θ but a scaling with sin θ is required to translate E to the transverse

energy ET. This scaling reduces the effect of noise on ET as towers get further from

the barrel region.

The BCID efficiency was measured in multiple runs to check for consistency. Fig-

ures 6.3 and 6.4 show the comparison between 5 different HI runs, separated into

electromagnetic and hadronic partitions. The results from each run are generally

consistent, except in the case of the FCal. As previously mentioned, the forward

region is most challenging for calorimetry due to large particle fluxes and large en-

ergy deposition, so results are likely to be very sensitive to small beam and trigger

configuration differences between runs. Runs taken close together show good agree-

ment so this difference is most likely due to changes in the FCal gains that occurred

during HI running. A different study of BCID efficiency within the L1Calo system

and using proton-proton data has shown long-term stability of the system used for

BCID [71].
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Figure 6.2: BCID efficiency as a function of offline calorimeter ET for the electro-
magnetic calorimeter (left) and the hadronic calorimeter (right).
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Figure 6.3: BCID Efficiency comparison for electromagnetic calorimeter partitions
across different runs as a function of offline calorimeter ET. Top: Barrel Region
(left), Inner Endcap (right). Bottom: Outer Endcap (left), FCal (right).
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Figure 6.4: BCID Efficiency comparison for electromagnetic calorimeter partitions
across different runs as a function of offline calorimeter ET. Top: Barrel Region
(left), Inner Endcap (right). Bottom: Outer Endcap (left), FCal (right).

6.3 BCID On-Off Curves

The reconstructed offline calorimeter ET values for each tower follow, by definition,

a continuous distribution, but the L1Calo ET values are integer values (i.e. discrete)

determined by the output of the Lookup Table as described in Section 5.1. L1Calo

will therefore label each trigger tower pulse as having a height of 0 GeV, 1 GeV, 2 GeV

etc... It is a useful consistency check to measure the BCID Efficiency as a function

of offline calorimeter ET for each L1Calo pulse height. There is also a difference

in the hardware in which the L1Calo and calorimeter values are summed, with a

significant noise contribution coming from the electronics of the L1Calo summing

chain so not present in the calorimeter value which does not use these electronics.

Fluctuations in this noise can cause a noticeable shift between the two values, giving

a wide distribution of offline calorimeter ET for each L1Calo pulse height.
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6.3.1 Methodology

The same criteria for selecting trigger towers used previously are also used here, with

the additional separation into different L1Calo pulse heights from 0 GeV upwards.

The previously shown turn-on curves are therefore split up into on-off curves, one

for each pulse height, which shown what contribution to the BCID efficiency comes

from each pulse height. The statistics for HI data are too limiting to measure the

efficiency beyond an ET of 6 GeV. The BCID efficiency for an X GeV pulse height,

EfficiencyX is then defined as:

EfficiencyX =
No.Calo Cell ET & BCID > 0 & L1Calo ET = X GeV

No.Calo Cell ET

(6.2)

6.3.2 Results

The relative heights of each curve, where a curve contains signals for only one L1Calo

pulse height, shows how much of the efficiency at a given ET is due to each L1Calo

pulse height. As such, the combination of all on-off curves gives the full efficiency

shown in Figure 6.2. Figure 6.5 shows on-off curves for the electromagnetic and

hadronic barrel partitions. The curves are very similar for the other partitions

though slightly broader in the FCal.

It can be seen that the efficiency which comes from 1 GeV L1Calo pulses is low

compared to the others. This is due to the high probability that pulses reconstructed

as 1 GeV in the L1Calo hardware will fail the noise cut threshold associated with

that tower, based on the FIR filter output of the central time slice. The noise cut

is performed by the LUT and is designed to remove towers which are only showing

electronic noise. The threshold varies from tower to tower depending on its position

in η and φ. This causes the pulse height to be set to zero, and is therefore considered

as being a 0 GeV L1Calo pulse, despite having an ADC spectrum which allows

it to pass BCID. The efficiency associated with 0 GeV L1Calo pulses is therefore
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Figure 6.5: On-off curves for Barrel partitions: Efficiency for each individual pulse
height. Left: Electromagnetic layer, Right: Hadronic layer.

significant at low calorimeter ET values but these towers will not then be used to

identify physics objects in the CPM and JEM. The peak of each curve is shifted

upwards in ET, away from the point where the L1Calo ET value is equal to the

calorimeter ET value. This is because of an increased probability to pass noise and

BCID requirements at higher ET but is most pronounced in the earlier curves. This

effect also produces asymmetric tails on the distributions but is compensated in the

asymmetric shape of the central part of the curves, such that the mean and peak of

each curve differ by less than 0.05 GeV (half a bin width). The hadronic layer has

lower and wider curves (though of approximately equal area) due to increased noise

in the tile calorimeter, which results in a larger range of ET values being included

in each pulse height shape.

6.4 Understanding Badly Performing Towers

The BCID efficiency in the hadronic barrel was seen to be plateauing below the

other partitions in Figure 6.2, although it appears to reach almost full efficiency

(98%) at higher ET. To investigate whether this was due to a general problem with

this partition or due to individual towers, the efficiencies were calculated for each

tower. The tower efficiencies have been split into two ranges: 0.5 ≤ ET < 2.0 GeV
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and ET ≥ 2.0 GeV. This split has been used to highlight any anomalies but also to

exclude the region ET < 0.5 GeV where the results are known to be unreliable due

to the ntuple selection bias. The efficiency maps are shown in Figures 6.6 and 6.7

for the electromagnetic and hadronic layers, respectively. As mentioned in Section

5, the towers are of size ∆η×∆φ = 0.1× 0.1 in the barrel partition but increase as

a function of η so that each block in the efficiency maps represents one tower.
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Figure 6.6: Efficiency map for each tower in the electromagnetic layer. Left: for
0.5 ≤ ET < 2.0 GeV, Right: for ET ≥ 2.0 GeV.
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Figure 6.7: Efficiency map for each tower in the hadronic layer. Left: for 0.5 ≤
ET < 2.0 GeV, Right: for ET ≥ 2.0 GeV.

The towers which are shown as white in the maps are those which have been marked

as “Bad” or “Dead” in offline databases so have not been included in this study.

This is generally due to malfunctioning readout electronics, which make the signals
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unreliable. In both the electromagnetic and hadronic layers there is a clear checker

board pattern visible below ET of 2.0 GeV, which is an expected effect of the L1Calo

design, caused by electronic noise on the PPM electronics. The crack region in the

electromagnetic calorimeter, 1.4 < η < 1.5, is clearly visible as having lower effi-

ciency in both ET ranges. In the hadronic layer there are several towers observed at

η = ±0.95 with very low efficiencies (marked as blue in Figure 6.7). These are found

in a semi-regular 8 fold pattern on each side which is not quite cyclically symmetric

in φ or symmetric in ±η. These towers explain the lower plateau observed in Figure

6.2. Initially it was not known why these towers should be performing so badly, so

further investigation into the behaviour of these towers was performed, including

the short study shown in Section 6.4.1.

6.4.1 Differences Between Towers

It is expected and observed that towers at different η values will have different BCID

efficiencies, partly due to noise differences but also due to differences in properties

such as ET spectra. To remove any η dependency, the poorly performing towers are

only compared to towers at the same η value (±0.95). The ATLAS calorimeters and

trigger are cyclically symmetrical in φ so there are not expected to be any differ-

ences between towers at fixed η. The ET spectra for all towers at fixed η have been

compared and found to be consistent within statistical fluctuations of each other,

as shown in Figure 6.8. This figure shows a comparison between the first poorly

performing positive η tower in φ and one of its neighbouring towers. Also shown are

the ADC spectra across the five time slices used in BCID for these two towers. No

pedestal has been subtracted from these values. The ADC counts in each time slice

have been summed over all deposits to obtain this plot. Dividing by the number of

deposits would give the average shape but this is not necessary as a similar number

of deposits should be recorded in each tower.
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Figure 6.8: Comparison of trigger towers at η = +0.95. Shown are the first poorly
performing tower in φ in blue and a tower neighbouring it in φ in red. All recorded
signals have been summed together.

The average ET of a deposit in an HI event is very low, as shown in Figure 6.8a,

so the ADC values are dominated by the pedestal, which is around 32 counts per

deposit. A well behaved tower should therefore have an ADC spectrum that is

close to flat but shows a signal-like pulse peaking in the middle slice and a slight

asymmetry in the falling edge due to the design of the calorimeter electronics. The

well performing tower, in red, behaves as expected for a trigger tower in Heavy Ion

collisions. The poorly performing tower, in blue, however, behaves very differently

and shows a shape very different from a signal expectation. There appears to be an

amplification in the difference between time slices as well as a low second slice and

a high fifth slice , at the 1% level, such that the central slice is not the peak. This

spectrum does not look like the expected pedestal dominated shape with a small

signal enhancement.

Similar distortions are observed in many of the poorly performing towers. To char-

acterise the deviation of the ADC spectrum in each tower, a zero order polynomial

is fitted to the ADC spectrum in each tower using a χ2 minimisation using the

assumption that signals are a fluctuation above the pedestal. This is not a statis-

tically accurate χ2 due to the nature of the test statistic but it is a useful test to
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characterise the abnormality of a tower. Figure 6.9 shows the ADC spectra and fit

to each of the two towers shown previously: the well performing on the left and the

poorly performing tower on the right.
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Figure 6.9: Deviation of the two towers shown previously by fitting a 0 order poly-
nomial. Left: well performing tower showing a pedestal dominated signal, Right:
poorly performing tower showing a strong distorted signal.

The difference in the χ2 is very large and this situation is generally replicated across

the well performing and poorly performing towers at η = ±0.95. The deviation for

each tower has been plotted against the BCID efficiency for deposits with 0.5 ≥

ET < 2 GeV (as shown in efficiency map in Figure 6.7) to correlate the two quan-

tities. The correlation is shown in Figure 6.10. There is a clear separation of the

towers into two populations, one that has low χ2 values and good efficiency and the

other with high χ2 values and poor efficiency. Only two outliers exist, one from each

population, but the populations are otherwise very well separated.

The towers in the bottom right population have all been identified as towers whose

readout signals are put through the same tile modules as the MBTS. The MBTS

modules use high gains and the MBTS signals can become very large due to the

high occupancy of the scintillators during HI. Bunches of cables carry both the

MBTS signals and normal hadronic calorimeter trigger tower signals so as the MBTS

signals have increased in size the effect of cross talk has also increased on the towers
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Figure 6.10: BCID efficiency for deposits in the range0.5 ≤ ET < 2 GeV against the
χ2 of the ADC shape deviation for each tower at η = ±0.95.

connected to the same modules at η = ±0.95. This distorts the ADC shape, which

causes problems for the BCID system, which, in turn, expects a signal-like shape.

As a result of this study and others the MBTS trigger signals were switched off.

6.5 Summary

The BCID efficiency in the L1Calo system has been investigated. The efficiency of

all partitions in both calorimeters follows a turn-on curve and becomes almost fully

efficient by ET = 3 GeV. The BCID efficiency is also measured for the different

L1Calo pulse heights, which shows the width of the calorimeter ET distribution for

each pulse height. The hadronic calorimeter is found to have much wider pulse

height resolutions than the electromagnetic calorimeter. Several hadronic towers at

η = ±0.95 were found to perform significantly worse than other towers in the same

region. These towers were found to have heavily distorted pulse shapes compared to

well behaving towers. The source of the distortion was identified as cross talk from

the MBTS signal, which were later disabled, partly due to this study.



CHAPTER 7

Search For A Higgs Boson Decaying To A b-Quark Pair

7.1 Introduction

Presented here is a search for a standard model Higgs Boson decaying to a b-quark

pair in association with a W boson, using the process WH → `νbb̄ with the ATLAS

detector. The Feynman diagram for Higgs production by WH was previously shown

in Figure 2.4d. For much of this chapter, and the following two, the channel will

be referred to as “WH”. Two analyses, with a large number of similarities, will

be described in this chapter: One in which the invariant mass of the reconstructed

Higgs system (2 b-jets) is used as the final discriminant and one in which the final

discriminant is the output of a Boosted Decision Tree (BDT) trained to extract a

signal. The two analyses will be referred to as the “cut-based” and “MVA”, respec-

tively. More details of the two analyses are provided in Section 7.4. The general

strategy of the cut-based analysis is to apply selection requirements (cuts) optimised

65
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to enhance the ratio of signal to background. The MVA analysis takes a different

approach, applying only a loose preselection to preserve signal statistics and then

allowing the multivariate (MVA) method to separate signal and background.

The analyses presented here use triggers which select events with large transverse

missing energy, Emiss
T , for which more details will be provided in Section 7.6. The

Emiss
T triggers can be useful for selectingWH events in which theW decays to a muon

and muon neutrino as the muon leaves almost no deposit in the calorimeters and so

both particles contribute to the Emiss
T calculated within the trigger system. This is

different to the main WH analyses in which the triggers used are those that select

events with single high energy leptons. The analyses presented here will be referred

to as the “Emiss
T triggered” while the analyses using the single lepton triggers will

be referred to as the “Nominal”. The Nominal analyses were produced by another

WH analysis group. Differences between the Emiss
T triggered and Nominal analyses

will be noted in the text. The Emiss
T triggered analyses will be used on their own to

extract results as well as merged with the Nominal to extract results. The merged

analyses will be referred to as the “Combined” analyses. The analyses described

here, the Emiss
T triggered and Combined, are fitted using the fit model described in

Chapter 8 to extract the results presented in Chapter 10.

7.2 Data & Monte Carlo Samples

The dataset used for the WH analyses is the full amount of proton-proton data

collected by the ATLAS detector during 2012, at a centre-of-mass energy of 8 TeV.

The data recorded must fulfill certain requirements on the normal operation of each

sub-detector and, therefore, data quality. The total integrated luminosity pass-

ing these requirements is 20.3 fb−1. The data used comes from the JetTauEtmiss

stream, whereas the Nominal analysis uses the EGamma and Muon streams. The

JetTauEtmiss stream will contain events passing Emiss
T triggers with no additional
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requirements on leptons or jets. As mentioned in Section 4.5, there ise overlap

between these three streams.

To understand the distributions expected from background processes and the en-

hancement in these distributions that would occur in the presence of a signal, Monte

Carlo (MC) generators are used to produce simulated data. MC is also required for

understanding detector response and correcting for this. The MC samples used in

the WH analyses simulate both the signal and backgrounds expected for this search.

The samples are generated using a variety of different MC event generators which are

optimised for certain type of events. Individual samples may use multiple generators

to simulate different portions of the overall process.

The generators simulate the full topology of an event, using current theoretical un-

derstanding, and output the 4-momentum vectors of the particles produced. The

generator output is known as MC truth as it contains the true information of the

particles simulated without any detector effects. The MC truth is passed through

a simulation of the ATLAS detector built using GEANT4 [72], which includes the

detector geometry and the response of all sub-detectors [73, 74]. The majority of

samples use the reduced ATLFastII simulation of the detector rather than the full

simulation [75] . This reduces the per event processing time considerably through

the use of pre-built calorimeter shower templates (based on particle type, energy and

detector position) rather than running the full showering simulation. MC samples

are assigned weights based on the number of events in the sample and the cross-

section of the process simulated in order to get distributions normalised to the same

dataset size of 20 fb−1.

All signal and background events have the output 4-vectors of minimum bias events

mixed with them, before the event is passed through the detector simulation, to ac-

count for the multiple interactions that occur when the proton beams collide. The

distribution of the number of these additional events is set to be the same as is
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observed in data. A large set of minimum bias events is generated using PYTHIA

8 [76] with an ATLAS tuning of PYTHIA’s parameters called AU2 [77] and the

MSTW2008LO PDF set [78] for the initial distributions of quark momenta within

the beam protons. This set of minimum bias events is resampled for all samples.

The signal process, WH → `νbb̄ (where ` = e, µ, τ), is generated using PYTHIA 8

with the AU2 tuning and the CTEQ6L1 PDF set [79]. The outgoing semi-stable par-

ticle 4-vectors are passed through the MC generators PHOTOS [80] and TAUOLA

[81] to add final-state radiation and τ decays, respectively. A proportion of the τs

produced will decay to e or µ and neutrinos and so would be considered as signal

events for this search. The branching ratios used for these decays are 17.82±0.04 %

for τ → eνeντ and 17.39± 0.04 % for τ → µνµντ [1]. High statistics signal samples

are generated for Higgs masses at 5 GeV intervals between 100 and 140 GeV, exclud-

ing 105 GeV(for which only a small statistics sample was available. Not only do the

properties of the final state particles vary with Higgs mass but so does the expected

number of events because, as shown previously in Chapter 2.3, both the Higgs cross

section and branching ratios vary with Higgs mass. The NNLO cross section for

Higgs production in association with a W boson in proton-proton collisions at a

centre-of-mass energy of 8 TeV for the Higgs masses used in the analyses are shown

in Table 7.1. The branching ratios of the H → bb̄ decay mode for the same masses

are shown in Table 7.2, calculated using HDECAY [82]. ZH,H → bb̄ samples were

also generated, using the same setup, as there can be significant contamination be-

tween the different V H,H → bb̄ modes.

Background processes must also be simulated to determine the expected yield in

data in the absence of a signal. Different MC generators and configurations are used

to simulate the different background processes, a summary of which is provided

below:

• Samples containing a vector boson and additional jets (W/Z+ jets) are gen-
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mH (GeV ) σ(WH) (pb) QCD Scale (%) PDF+αs (%)
100 1.447 ± 1.0 ± 2.3
110 1.071 ± 1.0 ± 2.4
115 0.9266 ± 1.0 ± 2.3
120 0.8052 ± 1.0 ± 2.5
125 0.7046 ± 1.0 ± 2.3
130 0.6169 ± 0.9 ± 2.4
135 0.5416 ± 1.0 ± 2.5
140 0.4768 ± 1.0 ± 2.4

Table 7.1: Inclusive cross sections and uncertainties for WH production in pp colli-
sions at 8 TeV. The values are produced by the Higgs Cross Section Working Group
[83]. The uncertainties included are the QCD scale uncertainty, which covers the
uncertainty in determining the renormalisation scale to account for missing higher
orders in the calculation, and the combined uncertainty due to initial proton parton
densities and running QCD coupling.

mH (GeV) Branching ratio Relative Up Uncertainty Relative Down Uncertainty
100 0.789 +1.78% −1.83%
110 0.744 +2.13% −2.18%
115 0.703 +2.40% −2.46%
120 0.648 +2.76% −2.83%
125 0.577 +3.21% −3.27%
130 0.494 +3.71% −3.78%
135 0.404 +4.25% −4.32%
140 0.315 +4.80% −4.83%

Table 7.2: Branching Ratios for the Standard ModelH → bb̄Decay Mode at different
Higgs masses, mH . The values are produced by the Higgs Cross Section Working
Group [83].
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erated by SHERPA [84] using the CT10 PDF set [85]. Samples are produced

separately for different leptons, pT(W/Z) ranges, and hadron flavours. The

separation of samples and the statistics generated in each is chosen to ensure

good modelling in the more sensitive regions (high signal-to-background) of

the analyses that have low event rates.

• A very large tt̄ sample (approximately 100 million events) is generated using

POWHEG [86] with the CT10 PDF set interfaced to PYTHIA, to handle

hadronisation and parton showering, using the Perugia2011C tune [87] and

CTEQL1 PDF set [79]. tt̄ decays are filtered to ensure that all recorded events

have at least one lepton in the final state.

• Single top samples for the s-channel and Wt-channel are produced using the

same MC generators and settings used for the tt̄ samples while the t-channel

uses ACERMC [88] interfaced to PYTHIA, both using the Perugia2011C tune

and the CTEQL1 PDF set.

• Diboson samples are generated using POWHEG interfaced to PYTHIA, uwith

the CT10 PDF set and the AU2 generator tuning. Diboson samples are pro-

duced separately for WW , WZ and ZZ.

• Multijet interactions are unfeasible to simulate in high enough statistics to be

of any use to the analyses so an estimate of the yields in each analysis region

is derived from data and then used as a representation of this background.

Multijet has a huge production cross section at the LHC but only a tiny

proportion of multijet events contain objects of similar kinematics to the signal

process. The yields from this background are taken from the templates and

normalisations performed by the V H,H → bb̄ search group within ATLAS.

The details of the derivation can be found in [40]. For the Emiss
T triggered

analyses the yield is expected, and found, to be completely negligible, as it

is much easier for a jet to fake an electron than a muon and the multijet

events mostly give a low (fake) reconstructed pT(W ). A number of the analysis

selection requirements, particularly for the Emiss
T triggered analyses, are chosen
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to suppress this hard to model background.

7.3 Object Selection

The objects reconstructed and selected in the Emiss
T triggered WH analyses are

muons, electrons, Emiss
T and jets. Additionally, the jets are b-tagged, a procedure

which is described in Section 7.5. Two categories of electrons and muon are defined,

“veto” and “signal”, where veto leptons are a subset of the signal leptons. The

lepton and jet categories are required to select signal-like events but also to veto

events which contain objects in addition to those required for the signal.

Veto muons [89] are made up of 3 different types: those reconstructed from a com-

bination of an inner detector track matched with a muon spectrometer track within

|η| < 2.7; those with only a muon spectrometer track within 2.5 < |η| < 2.7 and

those with an inner detector track matched to a small calorimeter deposit within

|η| < 0.1 where the muon spectrometer chambers are joined and therefore not fully

efficient due to coverage. The 3rd category are required to have pT > 20 GeV, while

the other two must have pT > 7 GeV, impact parameters of less than 0.1 mm (10

mm) in the transverse (longitudinal) plane and fractional track isolation of less than

0.1. Fractional track isolation is defined as the pT sum of tracks within a cone of

radius ∆R = 0.2, centered around the muon, divided by the muon’s transverse mo-

mentum.

Signal muons must pass all the criteria for loose muons but the type is restricted to

those reconstructed from an inner detector track matched with a muon spectrometer

track within |η| < 2.5. The pT cut is raised from 7 GeV to 25 GeV and the fractional

track isolation cut tightened to 0.04. An additional requirement is added that the

fractional calorimeter isolation must be less than 0.04. Fractional calorimeter iso-

lation is defined as the ET sum of calorimeter deposits within a cone of ∆R = 0.3,
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centered around the muon, divided by the muon’s transverse energy.

Veto electrons must satisfy the ATLAS “very loose” operating point of a likelihood

built out of variables from matched inner detector tracks and calorimeter clusters

[90]. The electrons are required to be within |η| < 2.47 and have pT > 7 GeV. The

same track isolation requirement for loose muons is applied for loose electrons. For

the Emiss
T triggered analyses there is no signal electron category, only veto, but for

the Nominal analysis a signal category is defined. Electrons passing the veto criteria,

pT > 25 GeV, plus the same track and calorimeter isolation requirements used for

signal muons, and the ATLAS “very tight” likelihood categorisation are defined as

signal electrons for the Nominal analysis.

Jets are identified with the anti-kT clustering algorithm [91] using data from the

calorimeters with a clustering radius of R = 0.4 [92]. Information from both

calorimeters is calibrated to the hadronic energy scale based on the candidate jet’s

properties using a global sequential calibration [93]. Jets must additionally be cali-

brated based on the amount of additional energy deposits arising from pileup events,

additional interactions occuring during the same bunch crossing [94]. Two categories

of jets are defined, veto and signal, as was done for the leptons. Veto jets are those

with either pT > 20 GeV and |η| < 2.5 or pT > 30 GeV and 2.5 < |η| < 4.5. Signal

jets are those with pT > 20 GeV and |η| < 2.5. All signal jets must pass a Jet

Vertex Fraction (JVF) cut of more than 0.5 designed to reject jets from additional

interactions occurring when the beams cross. The JVF is defined as the fraction

of the jet’s pT which comes from tracks originating from the primary vertex [95].

The forward jet pT cut is higher than for signal jets because low pT forward jets

are expected from pileup, and without tracking in this region a JVF cut cannot be

made, whereas a high pT jet is not consistent with the signal kinematics.

In the case of the electrons, muons and jets overlapping each other, the following
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rules are applied to resolve which objects are present. First, jets within ∆R < 0.4

of an electron are removed. Second, jets within ∆R < 0.4 of a muon are removed

if the number of tracks within the cone is less than 4, consistent with a muon plus

final state radiation, but the muon is removed instead if there are at least 4. Finally

muons within ∆R < 0.2 of an electron are removed if they are calorimeter-seeded

muons, but the electron is removed if they are not.

The magnitude and direction of Emiss
T is constructed from vector sums of the visible

calibrated objects in an event [96]. Calorimeter clusters are recalculated based on

the final calibrations of the electrons, taus, photons and jets used in the ATLAS

Emiss
T algorithm. All calorimeter clusters within |η| < 4.5 are used. The momenta

of calibrated muons are added in but the soft calorimeter deposits associated with

these muons are explicitly removed to avoid double counting. Additional corrections

to the magnitude and direction of Emiss
T are made to account for the contributions

expected from pileup and underlying event.

7.4 Event Selection

The analyses’ event selections are designed to first select a leptonically decaying

W boson and then find two associated b-jets to identify processes of the type

WH → `νbb̄. The trigger is an important aspect of these analyses but will be

described in 7.6 rather than here. The analysis cuts which vary between the cut-

based and MVA analyses and vary between pT(W ), the transverse momentum of

the W , regions are summarised in Table 7.3.

A W boson decaying to a muon and a muon neutrino is identified, in the Emiss
T

triggered analyses, by selecting events with exactly one signal muon (as described

in Section 7.3), no additional veto leptons and Emiss
T as the signature of a neutrino.

The value of Emiss
T must be above 20 GeV in both the cut-based and MVA analy-
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Cut-based MVA
pT(W ) 120− 160 GeV 160− 200 GeV > 200 GeV > 120 GeV
mT (W ) < 120 GeV < 120 GeV < 120 GeV -
∆R(jj) 0.7− 2.3 0.7− 1.8 < 1.4 > 0.7 or pT(W ) > 200 GeV
Emiss

T > 20 GeV > 20 GeV > 50 GeV > 20 GeV

Table 7.3: Table of pT(W ) dependent kinematic cuts applied to the cut-based and
MVA

ses, with the additional requirement of Emiss
T > 50 GeV in the cut-based analysis if

the reconstructed pT(W ) is calculated to be above 200 GeV. This requirement is

included to remove poorly reconstructed events. The value of pT(W ) is determined

by combining the muon and Emiss
T vectors. For the Emiss

T triggered analyses there are

additional cuts of pT(W ) > 120 GeV and that Emiss
T (NoMuon), Emiss

T with the muon

contributions to the calculation removed, must be above 120 GeV. This is done

so that the Emiss
T triggered analyses only use regions where it is believed the Emiss

T

triggers are well modelled [40]. Additionally, the multijet background is negligible

in the high pT(W) regions. In the Nominal analyses, events are also selected which

have exactly one signal electron if the event has a high reconstructed pT(W ), due

to problems in the data driven multijet description for low pT(W ). At low pT(W )

in the Nominal analyses, the Emiss
T cut is replaced by a cut on HT , the magnitude

of the sum of the lepton, Emiss
T and 2 leading jets.

The W transverse momentum is also used to split the analyses into separate re-

gions with different signal-to-background ratios and enhance the sensitivity of the

analyses. In the cut-based Emiss
T triggered analysis the regions used are 120 GeV <

pT(W ) < 160 GeV, 160 GeV < pT(W ) < 200 GeV and pT(W ) > 200 GeV. The

MVA Emiss
T triggered analysis consists of only one pT(W ) region, > 120 GeV. The

Nominal analyses have the additional regions of pT(W ) > 90 GeV and 90 GeV <

pT(W ) < 120 GeV for the cut-based analysis and pT(W ) < 120 GeV for the MVA.

The transverse mass of the reconstructed W , mT (W ) =
√

2p`Tp
ν
T (1− cos(φ` − φν)),
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is reconstructed from the lepton and neutrino vectors to check that the identified

lepton and neutrino are consistent with coming from the decay of a W . In the

cut-based analysis mT (W ) is required to be less than 120 GeV while in the MVA

analysis this variable is not cut on. Instead it is used as a variable to discriminate

between signal and background, a procedure that will be described in Section 7.7.

Using the transverse mass is a powerful way to remove multijet events but does little

to most of the other backgrounds that contain real W s.

The events must contain exactly 2 or 3 signal jets with no additional veto jets. A

cut is applied to the distance between the two jets (or two leading jets in the 3 jet

case), using ∆R as was defined in Equation 4.3. This distance, ∆R(jj), must be

greater than 0.7 in the MVA analysis unless the condition of pT(W ) > 200 GeV is

met, while in the cut-based analysis the cut is optimised in several pT(W ) regions:

0.7 < ∆R(jj) < 2.3 for 120 GeV < pT(W ) < 160 GeV, 0.7 < ∆R(jj) < 1.8 for

160 GeV < pT(W ) < 200 GeV and ∆R(jj) < 1.4 for pT(W ) > 200 GeV. The

Nominal Cut-based analysis has the additional cuts of 0.7 < ∆R(jj) < 3.4 for

pT(W ) < 90 GeV and 0.7 < ∆R(jj) < 3.0 for 90 GeV < pT(W ) < 120 GeV. These

jet cuts reduce significantly the tt̄ background which contains more jets in the final

state and generally has a larger separation between the two jets.

The two leading jets must then be b-tagged using the procedure described in Section

7.5. Applying b-tagging is very important to reduce the backgrounds due to W/Z+

light jets, those jets initiated by a strange, up or down quark. The third jet in the 3

jet case must not pass b-tagging. Once the candidate WH → `νbb̄ events have been

selected, the candidate H → bb̄ decays are reconstructed from the invariant mass of

the di-b-jet system:

mbb̄ =

√
(Eb + Eb̄)

2 − (pb + pb̄)
2, (7.1)

where pb and pb̄, the momenta of the b and b̄ initiated jets, are summed vecto-

rially. The resolution of the di-b-jet mass is improved by adding in energy from
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soft secondary muons found within the b-jet and removing the calorimetry deposits

associated with these muons [97]. The di-b-jet mass is used as the signal region

discriminant in the cut-based analysis and as a discriminating variable in the MVA

analysis, which will be described in Section 7.7. The di-b-jet invariant mass dis-

tributions, mbb, for the Emiss
T triggered analysis can be found in Section 7.8. It is

important that there is good data description by the MC in the Nominal regions

before the Emiss
T triggered analysis is merged with it.

7.5 b-jet Tagging

One of the most important tools for extracting a signal from the WH → `νbb̄ decay

mode is the use of b-tagging. The technique of b-tagging is used to differentiate b

quark initiated jets from other jets and exploits the lifetime of the b-hadrons the

b-quark will intially form as well as its mass. The lifetime of the b-hadrons allows

them to travel some distance from the primary interaction point before decay, so the

high granularity tracking of ATLAS can be used to reconstruct the corresponding

secondary vertex. The large mass of b hadrons, roughly 5 to 10 GeV, compared to

the lighter hadrons they decay into means that there are generally a larger number

of decay products than for light hadrons. Jets initiated by b quarks will therefore

have a larger number of tracks than light jets and a different shower shape which

can be discriminated by the highly performant ATLAS calorimeters.

The algorithm used to tag b-jets in the WH analyses is called MV 1c [98, 99], a

neural network based discriminator that has been trained primarily to reject charm

jets. The rejection of charm jets has been prioritised over the slightly better light

jet rejection performance of the previous MV 1 algorithm, improving by a factor of

approximately 2. The algorithms output a b-tagging weight, w, such that a cut can

be placed at a specific weight, known as an operating point. The MV 1c algorithm
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has been commissioned to allow multiple exclusive operating points to be used to

categorise jets [100]. The loose 80%, medium 70% and tight 50% operating points

are used, where the percentage refers to the portion of b-jets which pass that oper-

ating point. Using the operating points exclusively means that to be considered as

part of the category for a certain operating point, a jet must not pass the tighter

operating points, e.g. jets are only counted as loose if they are not also medium. By

categorising both leading jets using the exclusive MV 1c operating points, the events

can be categorised as 0-tag, 1-tag, 2LL-tag, 2MM-tag or 2TT-tag, as shown in Fig-

ure 7.1. The splitting of the double b-tagged events enhances the sensitivity of the

analyses by separating events into regions with different signal-to-background ratios.

The double b-tagged events are considered in signal regions in the fit to extract

results, while the single b-tagged events are considered in control regions and the

untagged events are not used. In the single b-tagged events, it is the distributions

of MV 1c b-tagging operating points which are used in the fit instead of using dis-

tributions of either di-b-jet invariant mass or BDT output. Four bins are used for

the tagged jet representing the 50%, 60%, 70% and 80% exclusive operating points

although the 60% operating point has not been used. The single b-tagged MV 1c

distributions are very useful in constraining the background normalisations, partic-

ularly the different flavour contributions to W/Z+jets, as the shapes of these differ

far more in the b-tagging distributions than in either di-b-jet invariant mass or BDT

output. The single b-tagged event MV 1c distributions for the cut-based and MVA

analyses can be found in Section 7.8.

7.6 Triggering Strategy and Impact on Event Yields

The Emiss
T triggered analyses make use of the lowest threshold unprescaled Emiss

T

triggers which are built, at trigger level, out of calorimeter based objects with no

use of muons. Due to changes in the trigger configuration during the 2012 running,
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Figure 7.1: Splitting of dijet events into different categories based on the b-tagging
efficiency points passed by the 2 leading jets. The event category can be found from
the region in which the intersection of jet 1’s tag weight (x-axis) and jet 2’s tag
weight (y-axis) falls.

a combination of slightly different triggers is used during the year but all have a

threshold of 80 GeV. The triggers vary slightly in the calibrations performed at

trigger level and in the treatment of different bunches within a bunch train, where

differences can occur due to the long time period of a calorimeter pulse compared to

a bunch crossing. In the Nominal analysis, the lowest threshold unprescaled single

lepton triggers are used for both electrons and muons. The Emiss
T triggers are used

here because of inefficiencies observed in the single muon triggers due to the lack of

complete coverage in the Level 1 muon trigger chambers and problems caused by

very high pT muons, which are hard to trigger. The muon triggers plateau at an

efficiency of approximately 80% at high pT.

The efficiency of the Emiss
T triggers in WH → µνbb̄ events is shown in Figure 7.2

as a function of muon pT, Emiss
T and Emiss

T recalculated without any muon contri-

butions (as this is close to the variable which the Emiss
T triggers actually use). The

efficiencies are calculated using signal MC at a Higgs mass of 125 GeV. Efficiencies

are shown both inclusively and exclusively of events passing the muon triggers used
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Figure 7.2: Emiss
T trigger efficiency for the WH → `νbb̄ Signal Monte Carlo at a Higgs

mass mH=125 GeV. The efficiency is shown as a function of pT(µ), Emiss
T (MET)

and Emiss
T without the muon contributions counted (METNoMuon). The efficiency

is shown both inclusively and exclusively, with a veto on the muon triggers used in
the Nominal analysis. A preselection of exactly one signal muon, 2 loose jets has
been applied.

in the Nominal analyses, the exclusive category having additional vetoes on wether

the event passes the muon triggers used in the Nominal analyses. A preselection

of exactly one signal muon, 2 loose jets and Emiss
T (NoMuon), Emiss

T without muon

contributions, greater than 100 GeV has been applied. This makes the efficiency

appear high as many events that would not pass the Emiss
T trigger also do not pass

the Emiss
T requirement. The Emiss

T triggers used have been predicted from signal MC

to be, in terms of the full Emiss
T calculation, 80% efficient for Emiss

T = 100 GeV, 97%

efficient for Emiss
T = 120 GeV and fully efficient above Emiss

T = 160 GeV [40].
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The position of analysis muons within the ATLAS detector is shown in Figure 7.3

for the muon triggered and Emiss
T triggered analyses with an arbitrary normalisation.

The positions are obtained using signal MC at a Higgs mass of 125 GeV. The positions

shown are offline calibrated muon coordinates rather than trigger RoI as these are

not meaningful for the Emiss
T triggered analyses. Figures 7.3a and 7.3b show the

positions of muons in the Nominal and Emiss
T triggered analyses, respectively, after

applying a preselection and skimming of exactly one signal muon, 2 loose jets and

Emiss
T without muon contributions greater than 100 GeV has been applied. Figures

7.3c and 7.3d show the position in the Nominal and Emiss
T triggered analyses after

the full cut-based analysis selection has been applied. It can be seen that the muons

recovered in the Emiss
T triggered analyses fall generally close to the centre of ATLAS,

around η = 0, as this is where the muon trigger coverage has problems and where

very high pT muons are more likely to be found. Particularly evident between Figure

7.3a and Figure 7.3b is the recovery of muons lost due to feet of ATLAS, in the

region covered by |η| < 1.1 and −2 < φ < −1. The large feet of ATLAS increases

the material budget in this region and decreases the amount of instrumentation that

can be installed there. The µ triggered analyses show a reduced yield of muons in

this region while the Emiss
T triggered analyses show an increased yield in this region

because the Emiss
T trigger is able to recover these muons.

The Emiss
T trigger has been used in these analyses to try to recover signal statistics

lost from the Nominal analyses due to inefficiencies in the muon triggers. The

number of events recovered by using the Emiss
T triggers exclusively as a fraction of the

number passing the muon triggers is shown in Figure 7.4a for the cut-based analysis

and Figure 7.4b for the MVA. The regions considered are signal regions with two b-

tags passing the loose tagging requirement. The yields used are prefit expectations

from MC, the raw number of events coming from the analysis of the MC with all

calibrations applied but none of the normalisations derived from fits to data applied.

The ratios are calculated at each of the Higgs masses used (100 GeV and 110-140

GeV) and are inclusive of jet multiplicity, b-tagging category, and pT(W ). The b-

tagging regions are merged together as no dependency on the b-tagging category is
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Figure 7.3: Positions of muons within the ATLAS detector from MC that are trig-
gered by the muon triggers (from the Nominal analyses) and exclusively by the Emiss

T

triggers (vetoing on the analysis muon triggers). Positions shown are offline muon
coordinates and not trigger RoI. The normalisation used is arbitrary. The upper
plots have a basic selection applied while the lower plots use the full cut-based event
selection.
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found in the ratio. The Emiss
T triggered analyses cover pT(W ) > 120 GeV whereas

the Nominal analyses cover pT(W ) > 0 GeV, which gives a fractional recovered yield

of about 8% as can be seen in Figure 7.4. In the more sensitive pT(W ) > 120 GeV

regions, in which the Emiss
T triggered analyses contribute, the increase in recovered

signal yield is in the range of 20-35% dependent on region. The yield of electron

triggered events is not considered here. Additional plots separated by jet multiplicity

and pT(W ) range are shown in Appendix A.

7.7 Multivariate Analysis

The use of the di-b-jet invariant mass distribution as the signal discriminant in the

cut-based analysis is not optimal for extracting a signal because the main back-

grounds have largely similar values to the signal. Multivariate techniques are there-

fore used to differentiate the signal from the background. Multivariate techniques

use a number of analysis variables, the correlations between which can be exploited

to separate the signal and background. A Boosted Decision Tree (BDT) [101] is

chosen as the multivariate technique to be used in the WH search. An individual

decision tree consists of stages of branches, connected at nodes, which splits events

based on a binary cut on an individual variable. This classifies each event based

on how many of the cuts are passed or failed. Half of the MC statistics available

for signal and background are used to train the decision tree such that weights are

assigned to each input variable based on how important it is for separating signal

and background. The weights for each variable can be applied and combined to

produce a single discriminating value. The other half of the samples is then used to

test the training by comparing the final output of the training and test samples.

Individual decision trees are very susceptible to instability caused by artifacts in the

information used to determine the split at each level. A BDT improves on this by

reweighting the events based on how far they fall from the main population of their
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Figure 7.4: Ratio of exclusive Emiss
T triggered to µ triggered signal yields in the

cut-based and MVA analysis as a function of Higgs mass, mH . The yields are
all prefit Monte Carlo expectations. All b-tagging regions and pT(W ) regions are
merged together to obtain the yields (pT(W ) > 120 GeV for the Emiss

T triggered
and pT(W ) > 0 GeV for the µ triggered). The error on each point contains only
statistical and trigger uncertainties.
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sample type. A new tree is formed from these reweighted events and the process is

repeated. The weight for each variable is then taken as the average of the weights

determined in each tree. This not only gives a more stable weighting but also pro-

vides better signal and background separation.

Training was performed by the ATLAS groups performing the NominalWH analyses

to determine the analysis variable weights to be used in the final discriminant. The

variables used in the BDT are the following: Reconstructed W boson pT (pT(W ));

Missing transverse energy (Emiss
T ); Reconstructed W transverse mass (mT (W )); pT

of each of the two b-tagged jets (pT(b−jet1), pT(b−jet2)); Di-b-jet mass (mbb); Sep-

aration of the two b-jets (∆R(bb)); Angle between the reconstructed W and di-b-jet

system (∆φ(W, bb)); and the miniumum of the angles between the muon and each

b-jet (min(∆φ(µ, b − jetx))). These variables were used because they were found

to have the best separation between signal and background or, in combination, to

have powerful correlations.

The program TMVA [102] is used to construct a separate BDT for each signal region

but with the different b-tagging classifications merged. The BDT ouput distributions

for the Emiss
T triggered analysis can be found in Section 7.8. The gain in statistics

from the Emiss
T triggered MVA analysis with respect to the Nominal analysis was

shown previously in Section 7.6.
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7.8 Prefit Emiss
T triggered Regions

The prefit distributions of regions used in the Emiss
T triggered cut-based analysis are

shown in Figures 7.5 to 7.11 and for the MVA analysis in Figures 7.12 to 7.14. Each

plot shows both the data, as points with error bars, and the prefit Monte Carlo,

as stacked histograms. The prefit distributions contain the raw event yields with

all calibrations applied but with no normalisations derived from fits applied. The

statistical uncertainty on the data is represented by the error bars on the points

and the total prefit statistical and systematic uncertainty on the Monte Carlo is

represented by the shaded area. The expected Higgs signal is shown both stacked

on top of the background histograms at the standard model expected cross section

times branching ratio and unstacked as an unfilled red histogram. The unstacked

signal is scaled by a factor shown in the legend, chosen separately in each region

to ensure it is visible. Each plot contains, below the main axes, the ratio of the

data yield to the prefit background plus signal expectation. The binning chosen for

the di-b-jet invariant mass and BDT output distributions is explained in Chapter 8.

Events falling beyond the upper bound of the final bin in the di-b-jet invariant mass

or BDT output distributions are included in the final bin. The choice of analysis

regions, in the context of the fit, is described in Section 8.2.

7.9 Summary

The Emiss
T triggers have been used to recover events lost by the Nominal single lepton

triggered WH → `νbb̄ analyses. Events are lost because the muon triggers never

reach full efficiency. The recovered signal yield is approximately 8% of the total

Nominal muon triggered signal yield (without considering electron triggered yield),

but between 20% and 35% in the high pT(W ) regions in which the Emiss
T triggered

events are used. The recovered events are used in both a cut-based analysis and

an MVA analysis and are split into the same regions as the Nominal analysis. The

Emiss
T triggered analyses are restricted to high pT(W ) events where the data can be
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Figure 7.5: Prefit distributions of the di-b-jet invariant mass, mbb, in the cut-based Emiss
T

triggered 2-jet pT(W ) = 120 − 160 GeV region, split into b-tagging categories. The data
is shown as points with error bars and the prefit Monte Carlo background yield is shown
as stacked histograms. The uncertainty on the total background yield is represented as
a shaded area. The expected Higgs signal, from a sample at mH = 125 GeV, is shown
both stacked on top of the background histograms at the standard model expectation and
un-stacked but scaled by the factor stated in the legend. The lower part of each plot shows
the ratio of the data yield to the prefit background and signal prediction.
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Figure 7.6: Prefit distributions of di-b-jet invariant mass, mbb, in the cut-based Emiss
T

triggered 2-jet pT(W ) = 160− 200 GeV region. Format is the same as Figure 7.5.
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Figure 7.7: Prefit distributions of di-b-jet invariant mass, mbb, in the cut-based Emiss
T

triggered 2-jet pT(W ) > 200 GeV region. Format is the same as Figure 7.5.
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Figure 7.8: Prefit distributions of di-b-jet invariant mass, mbb, in the cut-based Emiss
T

triggered 3-jet pT(W ) = 120− 160 GeV region. Format is the same as Figure 7.5.
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Figure 7.9: Prefit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T trig-

gered 3-jet pT(W ) = 160− 200 GeV region. Format is the same as Figure 7.5.
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Figure 7.10: Prefit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 3-jet pT(W ) > 200 GeV region. Format is the same as Figure 7.5.
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Figure 7.11: Prefit distributions of the b-tagging weight, MV 1c, in the cut-based Emiss
T

triggered 1-tag 2-jet and 3-jet pT(W ) > 120 GeV region. Format is the same as Figure
7.5.
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Figure 7.12: Prefit distributions of BDT output in the MVA Emiss
T triggered 2-jet

pT(W ) > 120 GeV region. Format is the same as Figure 7.5.
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Figure 7.13: Prefit distributions of BDT output in the MVA Emiss
T triggered 3-jet

pT(W ) > 120 GeV region. Format is the same as Figure 7.5.
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Figure 7.14: Prefit distributions of the b-tagging weight, MV 1c, in the MVA Emiss
T

triggered 1-tag 2-jet and 3-jet pT(W ) > 120 GeV region. Format is the same as Figure
7.5.
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modelled well and where the most significant regions are found, the regions with

the highest signal-to-background ratio. Distributions of the di-b-jet invariant mass

(in the cut-based analysis), BDT output (MVA analysis) and MV1c b-tag operating

points have been produced for both the Emiss
T triggered analyses, which can be found

in Section 7.8, and merged with the Nominal regions produced by another WH

analysis group to produce Combined regions. The fits applied to these analyses will

be described in Chapter 8 and the results will be presented in Chapter 10. A study

performed on the correlation of the different V H,H → bb̄ analyses will presented in

Chapter 9.



CHAPTER 8

Statistical Fit Model

This chapter describes the fit used to extract the results for the Emiss
T triggered and

Combined WH analyses, that were described in Chapter 7. For the convenience of

the reader, a glossary of selected terms is included below. These terms are important

for the description of the fit model used for the WH analyses and the understanding

of the results in Chapters 9 and 10. The regions and systematics used in the fits are

covered in sections 8.2 and 8.3.

8.1 Glossary of Terms

• Prefit: The expected yield for each MC sample in each analysis bin. Yields

are normalised to theoretical cross sections and the integrated luminosity of

the dataset, but have not been directly normalised to the data or adjusted in

any other way.

91
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• Postfit: The expected yield after all normalisations from the fit have been

taken into account. MC yields will be changed based on background normali-

sations and the signal strength, but data will remain the same as Prefit.

• Nuisance Parameter, θ: Parameters used in the fit to account for the differ-

ent systematic uncertainties and normalisations. Each nuisance parameter is

allowed to float in the fit, but is constrained by a Gaussian probability density

in the case of a systematic uncertainty and by a log-normal probability density

in the case of a normalisation.

• Asimov dataset: A pseudo-dataset created to be the most representative

of all the possible real datasets that could be obtained. A fit to the Asimov

dataset will yield the expected values for all parameter estimators. The yields

are built from the nominal MC predictions. Fits to the Asimov dataset use

values for the nuisance parameters that come from a background-only fit to

the data (signal strength fixed at 0). A fit of the nominal MC templates to

the Asimov dataset in which the signal strength is allowed to float can then

be used to obtain values for the expected performance of the fits.

• CLS: A frequentist method of setting limits based on the ratio of the confi-

dence level for the signal plus background hypothesis to the background-only

hypothesis [103]. The CLS method takes account of background fluctuations

better than conventional confidence interval calculations and prevents this

causing unphysical limits.

• Pull: The postfit central value and uncertainty of a nuisance parameter ex-

pressed as a shift from the prefit central value and as a fraction of the prefit

uncertainty. A pull will show any shift from the prefit value of the parameter,

suggesting a bias, or a changing in size of the error which suggests the uncer-

tainty was over/under estimated. Pulls can come from either fits to the real

dataset or to the Asimov dataset.

• Prior: A somewhat subjective assessment of the size of an uncertainty that

does not have an experimental origin. Uncertainties of experimental origin can



93 CHAPTER 8. STATISTICAL FIT MODEL

be propagated through the MC to obtain systematically shifted templates of

the MC, but other uncertainties such as the uncertainty on the ratio between jet

multiplicities have a prior placed on them which estimates the uncertainty of

the parameter, based on previous studies on the regions and samples involved.

• Signal Strength, µ: Multiple of the Standard Model expected value for the

cross section times branching ratio of the process being searched for/measured.

The best fit value measured for the signal strength is labelled as µ̂. More details

can be found in Chapter 2.

• Parameter of Interest (PoI): A parameter of the fit that represents the

end measurement and is not constrained or otherwise input to the fit as the

nuisance parameters are. The WH → `νbb̄ signal strength is the parameter of

interest in these fits so is allowed to float completely freely.

• p-value, p0: The probability of a given value to be observed assuming that

the null, background-only, hypothesis is true. This is interpreted as the prob-

ability for the background to fluctuate to produce the observed result with

zero contribution from signal. If the probability is very low then there is good

evidence to reject the background-only hypothesis and accept a signal plus

background hypothesis.

The WH fit is implemented using the Roostats package [104], which implements

the RooFit toolkit [105] for LHC analyses. A binned likelihood is constructed from

Poisson probability terms representing each of the bins from the analysis regions,

which will be detailed in Section 8.2, and considering all systematic uncertainties

and normalisations, which will be described in Section 8.3. Separate likelihoods are

constructed for each of the Emiss
T triggered and Nominal analyses. The likelihood,

L(µ, θ), is a function of the signal strength value, µ, and the values of the nuisance

parameters, θ. The signal strength is allowed to float freely with no penalty on the

likelihood, but any shift of the nuisance parameters from their prefit values incurs

a penalty that increases the likelihood, L(µ, θ). Statistical uncertainties in each bin
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can be incorporated in the same way as other nuisance parameters. The likelihood

is then used to define the test statistics, qµ, such that:

qµ = −2 ln
L(µ,

ˆ̂
θµ)

L(µ̂, θ̂)
, (8.1)

where
ˆ̂
θµ are the values of θ, the nuisance parameters, that maximise the likelihood

for that value of µ, while µ̂ and θ̂ are the best fit parameters that maximise the

likelihood. The ability of the nuisance parameters to move in this way broadens the

contour of the likelihood as a function of µ, providing less sensitivity to the best fit

value of µ. A likelihood for the background-only hypothesis, q0, can be constructed

by fixing µ = 0, which allows the nuisance parameters to find their best values in the

absence of a signal. The test statistics corresponding to the signal plus background

hypothesis, qµ, and the background-only hypothesis, q0, can be used to calculate

confidence levels independently, but here they are used as a ratio, fracqµq0, to in-

put to the CLS calculation [106]. This allows a determination of whether the data

observed can be described by the background alone or whether any difference ob-

served is more signal-like. The CLS method is used to calculate the upper limit, at

95% confidence level, for the signal strength as well as for p0, described previously,

and the observed value of µ̂. The 1σ and 2σ intervals of these results, which are

also useful for interpreting the result, are calculated by shifting qµ (Equation 8.1)

by 1 and 2 units respectively, and recalculating µ̂ while keeping all other parameters

fixed. A separate signal plus background likelihood, qµ, must be constructed and

the results calculated for each Higgs mass hypothesis in the analysis as the expected

signal will be different. For the MVA, this could also mean different background ex-

pectations if the BDT trainings at each mass point were used. For the MVA analyses

presented here, the mH = 125 GeV training is used for all mass points for simplicity.

The observed results do not give any indication of how sensitive any individual fit

is, due to statistical fluctuations that could occur in the data, and many of the

observed results are not meaningful without a comparison to the expected results.
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The expected results can be obtained by replacing the real dataset with the Asimov

dataset, such that all nuisance parameters get their postfit values from a background-

only fit to the real dataset, but the pseudo-data events are built from the nominal MC

yield. The inclusion of normalisation nuisance parameters means that the Asimov

dataset will be built with the background MC scaled by normalisations from real

data, which should reflect better the statistics in data. Setting µ = 0 in the Asimov

dataset can be used to see how strict the limits on µ̂ can be set, while setting µ = 1 in

the Asimov, assuming a signal exists, will show the size of the expected fluctuation

(an increased event yield) to the background that would be observed in data from

a standard model signal. These are the results that will be presented in Chapter 10

to obtain the expected performance of the analyses and as a source of comparison

for the observed results using the real dataset.

8.2 Fit Regions and Binning

The regions used in the WH analyses were briefly outlined in Section 7.5 but are

described more completely here.

The Emiss
T triggered analyses use only regions with pT(W ) > 120 GeV, but the

splitting is different between the cut-based and MVA analyses. The cut-based anal-

ysis further splits the pT(W ) range into three: 120 GeV < pT(W ) < 160 GeV,

160 GeV < pT(W ) < 200 GeV and pT(W ) > 200 GeV, while the MVA analysis

uses the range inclusively. For events containing two b-tagged jets the cut-based

analysis uses the final calibrated di-b-jet invariant mass distribution as input to the

fit and the MVA analysis uses the BDT output distribution, as described in Section

7.7. For both analyses the pT(W ) region(s) are separated into 2-jet and 3-jet events

and, within each jet multiplicity, into b-tagging categories based on the b-tags of

the two jets as shown previously in Figure 7.1 (labelled as LL,MM,TT). This gives

a total of 6 regions for each pT(W ) range. Both analyses also use the distribution of
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exclusive MV 1c b-tagging operating points (50,60,70 and 80%) of the tagged jet as

an input to the fit. For single tagged events in the cut-based analysis, the 3 separate

pT(W ) ranges are merged back into one that matches the categories in the MVA for

consistency. In both analyses the MV 1c distributions are split into that for 2-jet

events and that for 3-jet events. The Emiss
T triggered cut-based fits therefore consist

of 20 regions and the MVA fits consist of 8 regions. These regions were all shown in

Section 7.8.

For the Combined analyses, the regions for pT(W ) > 120 GeV are the same as in the

Emiss
T triggered analyses but additional regions are present for pT(W ) < 120 GeV.

The same jet multiplicity and b-tagging category splitting is used. The cut-based

analysis splits the low pT(W ) range into two: 0 GeV < pT(W ) < 90 GeV and

90 GeV < pT(W ) < 120 GeV, in which the di-b-jet invariant mass distributions are

fitted. The MVA analysis does not split the low pT(W ) range and uses the BDT

output distribution. Both analyses use the MV 1c distributions in a single pT(W )

range (pT(W ) < 120 GeV), set up in the same way as for the Emiss
T triggered analy-

ses. The fit regions for the Emiss
T triggered and Combined analyses are summarised

in Table 8.1. The pT(W ) regions used are shown and whether the variable used

in each region is the di-b-jet invariant mass (mbb̄), BDT output or distributions of

MV 1c b-tagging operating points (50,60,70 and 80%).

Cut-based MVA
pT(W )/ GeV 0− 90 90− 120 120− 160 160− 200 > 200 < 120 > 120

Emiss
T triggered

1-tag - MV 1c - MV 1c
2-tag - mbb̄ mbb̄ mbb̄ - BDT

Combined
1-tag MV 1c MV 1c MV 1c MV 1c
2-tag mbb̄ mbb̄ mbb̄ mbb̄ mbb̄ BDT BDT

Table 8.1: Summary of the regions used in the Emiss
T triggered and Combined cut-

based and MVA analyses.

The MV 1c distributions are used in the fit in their original binning because there
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are only 4 bins in each of the original distributions and the statistics are high. The

di-b-jet invariant mass and BDT output distributions contain a very large number of

bins, to give flexibility for the fit, and so must be rebinned for fitting to reduce the

bin-to-bin statistical variations and fit complexity. Rebinning is particularly impor-

tant in the high pT(W ) regions and tight b-tagging categories, where the expected

data yields are very low and the MC has statistical limitations. An algorithm is

implemented in the fitting procedure that attempts to choose an optimal binning

strategy for both sensitivity and fit efficiency, the time that the fits take to run [40].

The cut-based analysis di-b-jet invariant mass distribution is rebinned based on a

figure of merit that is proportional to the fraction of total expected signal events and

the fraction of total expected background events in a candidate merged bin. The

figure of merit for the MVA BDT output distribution bin merging is proportional to

the fraction of total expected background events in the candidate merged bin and

the statistical significance of the bins that will be merged. For both analyses an

additional constraint is imposed that the statistical uncertainty in the background

prediction cannot go above 10% in any bin.

The optimisation of the binning by an algorithm in the fit will most likely result

in variable bin sizing in the final distributions. Roostats is only able to accommo-

date fixed bin sizes and so is unable to use the output of the binning optimisation

algorithm. The binning chosen by the algorithm is therefore mapped into constant

width bins. The BDT output value is not a physical observable so this causes no

problems in interpretation but the di-b-jet invariant mass distributions would need

to be remapped to physically understand the contents of each bin. The binning

structure determined by the algorithm is used in both the prefit plots in Chapter 7

and for the postfit plots in Chapter 10, as well as the appendices described in each.
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8.3 Systematics

A large number of systematic uncertainties are considered for the WH analyses,

which come from a mixture of theoretical predictions, experimental uncertainties

in the ATLAS recommended calibrations for identification and reconstruction; and

corrections for different MC samples (to match data distributions) derived by the

ATLAS V H search group. The sources of these uncertainties for the Emiss
T triggered

analyses are very briefly outlined here and referenced where appropriate but a more

complete description can be found in [40]. The names used within the fit for the

systematics are in brackets and different type face as follows: (SystematicName).

The majority of systematics used affect only the normalisation of the distributions

used in the fit but some affect the shape of the distributions and these will be noted

in the description of those systematics. The following uncertainties are of experi-

mental origin:

• The total integrated luminosity of the dataset used has an uncertainty of

±2.8% (Lumi) as described in Section 4.6 [65] and the distribution of the num-

ber of additional pileup interactions has an uncertainty of ±3.7% (MuScale).

• Corrections applied to the lepton isolation requirements (LepIso) as described

in Section 7.3.

• The efficiency of muon reconstruction (MuonEffic) [89], as well as muon energy

calibration components from the Inner Detector (MuonEResolID) and Muon

Spectrometer (MuonEResolMS) [107].

• The efficiency of electron reconstruction (ElecEffic), energy resolution

(ElecEResol) and absolute energy scale (ElecE) [90], which affect the number

of events vetoed in the Emiss
T triggered analyses.

• Calibrations covering the absolute Jet Energy Scale (JES)(JetNP1-6), JES η

dependence (JetEtaModel and JetEtaStat), differences between the full AT-



99 CHAPTER 8. STATISTICAL FIT MODEL

LAS simulation and the ATLFastII simulation as described in Section 7.2

(JetNonClos), JES dependence on the number of additional pileup interac-

tions (JetMu) and reconstructed primary vertices (JetNPV), the contribution

of pileup to a jet’s pT (JetPilePt) and the average energy density in the event

(JetPileRho) from these additional interactions. Additional jet flavour based

uncertainties are included to cover the differences for JES in b-jet response

(JetFlavB) and the contribution from soft muons and neutrinos in b-decays

(JetBE), the unknown mixture of light jets and gluon jets in different sample

types (JetFlavComp Top, JetFlavComp Wjets, JetFlavComp Zjets and

JetFlavComp VHVV), and differences in light jet and gluon jet JES response

(JetFlavResp Top, JetFlavResp Wjets, JetFlavResp Zjets and

JetFlavResp VHVV) [108].

• The energy resolution of jets (JetEResol) [109], with an additional contribu-

tion for the resolution of b-jets (BJetReso) [97].

• Efficiency of jets passing the JVF selection (JetJVF) as described in Section

7.3 [95].

• Modelling of the b-tagging efficiency (described in Section 7.5 for truth matched

b-jets (BTagB0Effic - BTagB9Effic), truth matched c-jets (BTagC0Effic -

BTagC14Effic) and light jets (BTagL0Effic - BTagL9Effic). Uncertainties

are included to cover the differences observed in b-tagging efficiencies between

samples produced with different MC samples (BTagBSherpa, BTagBPythia8,

BTagCSherpa & BTagCPythia8) and an additional dependence observed for

close together truth matched c-jets (BTagTruthTagDR) [98, 99].

• Calibration of calorimeter cluster energy summing for Emiss
T absolute scale

(METScaleSoftTerms) and resolution (METResoSoftTerms) [96].

• Modelling of the Emiss
T trigger turn-on based on the choice of MC used

(METTrigZ) and the statistics in the turn-on region (METTrigStat) [40]. These

uncertainties only affect the turn-on region (described in Section 7.6) so are
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not expected to have a sizeable impact on the WH analyses that use only

highly boosted events.

The absolute normalisations of cross sections for the tt̄ (norm ttbar), W+2 b-jets

(norm Wbb) and W+c-jet+light-jet (norm Wcl) samples are included in the fit as

normalisations with log-normal probability densities, rather than being included as

uncertainties, to constrain the normalisation to be positive and physical. The nor-

malisation is defined as a multiple of the prefit expectation determined by the fit

and therefore represents the scaling between the prefit and postfit yields. Additional

normalisation-based uncertainties are included for the tt̄ and W/Z+ jets samples in

the fit but are implemented as normalisation ratios constrained by Gaussian prob-

ability densities. Some of these nuisance parameters are decorrelated between the

low and high pT(W ) regions, jet multiplicities or jet flavour combinations, which

effectively increases the total number of nuisance parameters.

Priors are placed on these additional normalisation ratio uncertainties based on MC

expectations and studies of these backgrounds and regions made by the ATLAS V H

analysis groups. The set of additional normalisation ratio uncertainties is chosen

such that their products and sums constrain all regions in the tt̄ and V+jets flavour

combinations. For the tt̄ background an additional ratio between the normalisation

of 2-jet and 3-jet multiplicities is included (ttbarNorm J3). The Combined fits in-

clude an additional ratio between the pT(W ) < 120 GeV and pT(W ) > 120 GeV

regions (ttbarHighPtV) that is not needed for the Emiss
T triggered fits as only the

high pT(W ) regions are included. For the V+jets background (where V = W or Z)

additional ratios are included between the the normalisations of the different di-jet

flavours: V+2 c-jets and V+2 b-jets (VccVbbRatio), V+b-jet+light-jet and V+2 b-

jets (VblVbbRatio) and V+b-jet+light-jet and V+b-jet+c-jet (VblVbcRatio). The

normalisation of the yield of V+2 light-jets (VlNorm) is included as a standard un-

certainty with a prior rather than as a normalisation. Additional uncertainties,

with priors, are included for the ratio between the rates of the 2-jet and 3-jet mul-
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tiplicities in V+2 b-jets (VbbNorm J3), V+c-jet+light-jet (VclNorm J3) and V+2

light-jets (VlNorm J3). These systematic uncertainties must have priors placed on

them, rather than having direct template-based variations from MC analysis, be-

cause these systematics do not come from calibrations but are, instead, designed

to account for differences in the predicted pT spectra and jet flavour distributions.

The priors are estimates of the maximum discrepancy expected in the ratio and are

based on studies performed within the ATLAS V H group.

Nuisance parameters that only apply to specific MC samples are outlined below.

The sources of these are a mixture of theoretical calculations, differences observed

between MC predictions and corrections applied due to mis-modelling observed in

the comparison of the MC prediction with the data.

• Signal: The calculation of the Higgs cross sections and branching ratios de-

pend on a large number of indirect constraints and theoretical predictions.

The H → bb̄ branching ratio has an mH-dependent value and uncertainty

(TheoryBRbb) as shown in Table 7.2 [83]. The production of V H via the

processes qq → V H and gg → ZH, which contaminates the WH analyses

and is therefore treated as signal, are calculated separately and have sepa-

rate uncertainties. The visible cross section relies on the QCD renormali-

sation scale (TheoryQCDscale ggZH and TheoryQCDscale qqVH), which cov-

ers the uncertainty in determining the renormalisation scale to account for

missing higher orders in the calculation, and its impact on the pT(V ) spectra

(TheoryVPtQCD ggZH and TheoryVPtQCD qqVH) which have shape components,

the PDF sets (TheoryPDF ggZH and TheoryPDF qqVH) and impact on the ac-

ceptance (TheoryAccPDF ggZH and TheoryAccPDF qqVH). There is also an ef-

fect from the acceptance across different jet multiplicites (TheoryAcc J2 ggZH,

TheoryAcc J2 qqVH, TheoryAcc J3 ggZH and TheoryAcc J3 qqVH), and the

NNLO contribution to the pT(V ) spectra (TheoryVHPt) which has a shape

component [40].
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• V+jets where V = W or Z: Reweighting for mis-modelling in the φ angle

between the two jets (VDPhi), the pT(V ) spectra (VPtV) and di-jet invariant

mass (VMbb) that are derived in phase space regions designed to isolate these

samples and which have shape components [40].

• tt̄: Reweighting of the pT(t) spectra to match that measured in data by a previ-

ous ATLAS analysis (TopPt) which has a shape component [110] and MC gen-

erator variations in the shapes of the di-b-jet invariant mass (TtbarMBBCont)

which has only a shape component and Emiss
T (TtbarMetCont) which has a

shape component.

• Single Top: Theoretical predictions for production cross sections (stopsNorm,

stoptNorm & stopWtNorm) [111] and normalisation differences observed in dif-

ferent regions, and parton showering of different MC generators (SChanAcerMC,

SChanAcerMCPS, TChanPtB2, WtChanAcerMC and WtChanPythiaHerwig). The

last two have a shape component.

• Diboson: Perturbative corrections to the cross section (VVJetScalePtST1,

VVJetScalePtST2) which have a shape component, PDF and αS variations

(VVJetPDFAlphaPt) and the di-b-jet invariant mass measured using different

MC generators in the three diboson channels (VVMbb WW, VVMbb WZ & VVMbb ZZ)

which vary only the shape and have no normalisation component.

• Modelling of the normalisation of the muon multijet estimate (SysMJMuNorm)

and the affect of track isolation in producing the multijet muon templates

(SysMJMuTrkIso). Additional multijet systematics are used in the Nominal

analysis to account for the modelling of the multijet estimate for electrons

(SysMJElNorm, SysMJElTrkIso and SysMJElCaloIso) and the reweighting

applied only for multijet electron events (SysMJDR and SysMJPtV). Of these

systematics, all but SysMJMuNorm and SysMJElNorm have a shape variation

component.
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As has just been described, there are a huge number of nuisance parameters in each

analysis fit. Coupled with the large number of regions, and therefore bins, this leads

to very long fit times, as each bin’s expectation for each sample must be varied by

each nuisance parameter. Additionally, many of the samples contain very low MC

statistics in some regions so systematic variations become susceptible to “noise”. To

improve fit times and reduce artifacts caused by low MC statistics, the systematics

are “smoothed” and “pruned” before the fit.

The smoothing is used for systematics that can effect the shape of a sample’s dis-

tribution rather than just the normalisation, for example, the Emiss
T calibration. In

these systematics, small statistics can cause disproportionally large bin-to-bin mi-

grations that bring with them large instabilities in the fit. For these systematics,

the systematically shifted templates for each sample are smoothed by merging bins

together until all bins in the template have a statistical error of below 5% for the

given sample.

Pruning removes from the fit those nuisance parameters that do not significantly

contribute to the pulls of the other nuisance parameters or the parameter of inter-

est. Normalisation-based nuisance parameters are pruned if the total difference in

the yield between the nominal and shifted expectations of a particular sample type

is below 0.5%. For nuisance parameters that vary only the shape and not the nor-

malisation of the distribution, the condition is changed to require that the difference

in each bin is below 0.5% for the nuisance parameter to be pruned. If the signal

expectation in a particular region is less than 2% of the background expectation,

then nuisance parameters are pruned for all samples wthat are also less than 2% of

the total background expectation and for which the nuisance parameter changes the

total background expectation by less than 0.5%.
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8.4 Nuisance Parameter Pulls & Ranking

A good way to understand the behaviour of the nuisance parameters in the likeli-

hood is to compare the pulls in the real dataset and those from the Asimov dataset.

There should be a very high degree of similarity because the signal is small compared

to the background expectation and so the background should determine the values

of the nuisance parameters. As described at the start of this Chapter, the Asimov

dataset is constructed from the Nominal background MC yield. The MC can then be

fitted to the Asimov dataset with all nuisance parameters initialised to their best fit

values from a background-only fit to data. The fit to data may shift some of the pulls

of nuisance parameters by a considerable amount, providing evidence that the back-

ground was wrongly modelled. Changes in the uncertainty of the parameter from

the prefit ±1σ values suggest that the size of the nuisance parameter was wrongly

estimated. The fit to the Asimov dataset can shift the nuisance parameters, but

the starting values are the data best fit values so well behaved nuisance parameters

should remain unshifted with central values of 1 for normalisations and 0 for other

nuisance parameters. The size of the uncertainties should not change relative to the

best fit values from data.

Comparisons between the data fit and the Asimov fit are shown in Figure 8.1 for

the cut-based Emiss
T triggered analysis and in Figure 8.2 for the MVA Emiss

T triggered

analysis. The pulls are grouped based on the source of the uncertainty. The best fit

pulls from data are shown as black points and bars while the pulls from the Asimov

dataset are shown as red points and bars. In each case the point shows the central

value of the nuisance parameter relative to its prefit value and the length of the

bar shows the size of the uncertainty compared to the prefit value as indicated by

the ±1σ green band and ±2σ yellow band. The pull values for the Asimov dataset

are relative to the values of the nuisance parameters after the background-only fit

to the real dataset, rather than the prefit values, which is why the majority of the

Asimov pulls stay at 0 (1 for normalisations). This is a sign of good behaviour of
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the individual nuisance parameters and stability of the fit.

An additional comparison of the nuisance parameter values from a fit to data be-

tween the cut-based and MVA Emiss
T triggered analyses is shown in Figure 8.3. This

takes the black points and bars from Figures 8.1 and 8.2, with the MVA data values

kept black and the cut-based data values changed to red. For some nuisance param-

eters only one of the two analyses is present because the other has been completely

pruned following the procedure described in Section 8.3. Several theory based nui-

sance parameters are completely pruned from the cut-based analysis because the

lower signal to background ratio in the signal regions prevents any sensitivity to,

or constraint of, these nuisance parameters. The nuisance parameters pruned from

the MVA fit are mostly those applied to Z+jets. For both analyses all nuisance

parameters originating from lepton Emiss
T trigger calibrations are completely pruned

as the Emiss
T triggered analyses only use events that are beyond the turn-on of the

variables these relate to. The values for the absolute normalisations of the cross

sections for tt̄, W+2 b-jets and W+c-jet+light-jet samples are shown in Table 8.2

for both the cut-based and the MVA fit.

Normalisation Cut-based MVA
tt̄ 1.27± 0.20 1.37± 0.30

W+2 b-jets 0.52± 0.27 0.73± 0.27
W+c-jet+light-jet 1.24± 0.22 1.23± 0.17

Table 8.2: Absolute normalisations for backgrounds in the Emiss
T triggered fits.

The nuisance parameters wthat were found to have the largest pulls or sizeable

differences between the cut-based and MVA fit values were investigated within the

ATLAS V H search group to ensure that the reason was understood. No problems,

dramatical shifts or bias, were found with any of the nuisance parameters or fit

setup.

The size and shift of the nuisance parameters do not show how big the shift in the

value of µ̂ observed could be because of one of these parameters. To understand

this a different procedure must be used, termed “Nuisance Parameter Ranking”.

Here, this test is performed only on data, not using the Asimov dataset. The best
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(a) b-tagging b-jets (b) b-tagging c-jets

(c) b-tagging light-jets (d) Jet Energy Scale

(e) Jet Energy Scale (f) tt̄,Single t,V V Modelling

(g) W/Z+jets Modelling (h) W+jets,tt̄ Normalisation

(i) Normalisation Ratios (j) Luminosity and Theory

Figure 8.1: Comparison of nuisance parameters in data (black) and Asimov (red)
fits from the cut-based Emiss

T triggered analysis. Each point and line represents the
postfit pull central value and uncertainty of a particular nuisance parameter. The
green and yellow bands represent the 1σ and 2σ prefit errors on the uncertainty.
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(a) b-tagging b-jets (b) b-tagging c-jets

(c) b-tagging light-jets (d) Jet Energy Scale

(e) Jet Energy Scale (f) tt̄,Single t,V V Modelling

(g) W/Z+jets Modelling (h) W+jets,tt̄ Normalisation

(i) Normalisation Ratios (j) Luminosity and Theory

Figure 8.2: Comparison of nuisance parameters in data (black) and Asimov (red) fits
from the MVA Emiss

T triggered analysis. Each point and line represents the postfit
pull central value and uncertainty of a particular nuisance parameter. The green
and yellow bands represent the 1σ and 2σ prefit errors on the uncertainty.
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(a) b-tagging b-jets (b) b-tagging c-jets

(c) b-tagging light-jets (d) Jet Energy Scale

(e) Jet Energy Scale (f) tt̄,Single t,V V Modelling

(g) W/Z+jets Modelling (h) W+jets,tt̄ Normalisation

(i) Normalisation Ratios (j) Luminosity and Theory

Figure 8.3: Comparison of nuisance parameters in fits of the cut-based (red points)
and MVA (black points) Emiss

T triggered analyses. Each point and line represents the
postfit pull central value and uncertainty of a particular nuisance parameter. The
green and yellow bands represent the 1σ and 2σ prefit errors on the uncertainty.
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fit values of each of the nuisance parameters are first obtained through a fit to data

and the value of µ̂ is then found using the CLS method. Each nuisance parameter is

then shifted up and down by its associated error with all other nuisance parameters

fixed. From this the likelihood can be maximised and a new value of µ̂ calculated

from both the upward and downward shift. The nuisance parameters that show the

largest fractional shift in µ̂ are ranked highest.

The ranking for the top 15 nuisance parameters in the Emiss
T triggered analyses can be

found in Figure 8.4 and for the Combined analyses in Figure 8.5. The description

of the contents of the plots can be found in the captions. The ranking plots for

the Nominal analyses can be found in Appendix B. It is predominantly the W+

heavy flavour jet normalisations and the nuisance parameters that are normalisation

ratios that rank highly in the Emiss
T triggered and Combined analyses. This is to be

expected as, along with tt̄, this is one of the biggest backgrounds, but in contrast

to tt̄, it has large uncertainties due to the lack of a clear control region in data.

In the Emiss
T triggered cut-based analysis the highest ranked nuisance parameter

is the absolute normalisation of the yield of W+2 b-jets (norm Wbb) and in the

MVA analysis it is the normalisation ratio of W+b-jet+light-jet to W+2 b-jets

(WblWbbRatio) that is ranked highest. For the Combined analyses it is the W+2

b-jets/W+2 c-jets di-jet invariant mass shape for pT(W ) > 120 GeV (VMbb) and

the absolute W+2 b-jets normalisation (norm Wbb) wthat are ranked highest for the

cut-based and MVA respectively. The ranking for the Combined analyses is similar

to the ranking for the Nominal analyses, which can be found in Appendix B. As

previously mentioned, some nuisance parameters are decorrelated in different pT(W )

regions and different jet flavours, which is why individual nuisance parameters can

appear multiple times in the ranking. For these nuisance parameters, the regions

which the ranking comes from is included in the name.
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Figure 8.4: Ranking of systematics and normalisations based upon their impact
on the fitted µ̂ value for the Emiss

T triggered cut-based and MVA analyses. The 15
highest ranking nuisance parameters are shown in each case. The bottom x axis and
the points show the relative shift of the postfit values of the nuisance parameters,
(θ̂−θ0)/∆θ, in terms of the postfit value, θ̂, prefit value, θ0, and the prefit 1σ uncertainty
on the nuisance parameter, ∆θ. The error bars on the points indicate the postfit
uncertainty in terms of the relative shift. The top x axis and boxes show the shift in
the fitted µ̂ value when the nuisance parameter is fixed to its postfit value shifted up
and down by the corresponding uncertainty. The shaded part of the box corresponds
to θ̂ + ∆θ while the unshaded corresponds to θ̂ −∆θ.
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Figure 8.5: Ranking of systematics and normalisations based upon their impact on
the fitted µ̂ value for the Combined cut-based and MVA analyses. The 15 highest
ranking nuisance parameters are shown in each case. The bottom x axis and the
points show the relative shift of postfit values of the nuisance parameters, (θ̂−θ0)/∆θ,
in terms of the postfit value, θ̂, prefit value, θ0, and prefit 1σ uncertainty on the
nuisance parameter, ∆θ. The error bars on the points indicate the postfit uncertainty
in terms of the relative shift. The top x axis and the boxes show the shift in the
fitted µ̂ value when the nuisance parameter is fixed to its postfit value shifted up and
down by the corresponding uncertainty. The shaded part of the box corresponds to
θ̂ + ∆θ while the unshaded corresponds to θ̂ −∆θ.
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8.5 Summary

The fits used to extract results for the signal strength, µ̂, from the WH → `νbb̄

Emiss
T triggered and Combined analyses have been described. The fit regions and

binning in the cut-based and MVA analyses have been designed to exploit fully the

dataset available while maintaining an efficient and robust fit. A large number of

nuisance parameters have been considered, with additional fits run to determine

their impact on the fitted value of µ̂ and, using the Asimov dataset, to check their

behaviour. The fits can be used to calculate the expected and observed values of the

95% confidence level limits on µ̂, p0 values, and significance as well as the observed

best fit value of µ̂. These fits are applied to the analyses described in Chapter 7 to

produce the results presented in Chapter 10. This fit model, with some extensions,

is used to estimate the correlations between the V H,H → bb̄ cut-based and MVA

analyses in Chapter 9.



CHAPTER 9

Correlation of the V H,H → bb̄ Cut-based and MVA analyses

9.1 Introduction

The complexity of the individual channels within the V H,H → bb̄ cut-based and

MVA analyses is extremely high, both in terms of selection and fitting proce-

dure. Object selection is common, though still complex, between the two dif-

ferent analyses, but the event selection and regions used are different. The AT-

LAS V H,H → bb̄ search is split up into 3 individual channels for the processes

ZH → ννbb̄, WH → `νbb̄ and ZH → ``bb̄ which will be referred to as the 0,1 and 2

lepton channels, respectively. The complexity of the combined V H,H → bb̄ analy-

ses is extremely high due to the huge number of regions considered when combining

the 3 individual channels as well as the need to account for the constraint on each

channel from the others. Aside from the regions used, the fit model is the same

for the cut-based and MVA analyses. For this chapter only, “Combined” is used to

113
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refer to the combination of the 3 individual channels to form the full V H,H → bb̄

analyses rather than the merging of the Emiss
T triggered and Nominal WH analyses

as in Chapters 7, 8 & 10. The Emiss
T triggered analyses are not represented in this

chapter, this study only uses the main 3 channels of the V H,H → bb̄ search.

The cut-based and MVA event selections are such that the cut-based events are

a subset of those used in the MVA analysis1. There should therefore be a high

degree of correlation between the cut-based and MVA fit results, but this needs

to be confirmed and the level of correlation estimated to ensure that there is the

expected level of statistical consistency between the two analyses. The MVA analysis

is known to be more sensitive, but by looking at the correlation with the perhaps

more robust cut-based analysis it can be ensured that no artifacts are sculpted by

the MVA in the output distributions. Toy Monte Carlo methods are often employed

to study the response of a fit, but they cannot be used for this task, as they will not

reproduce the overlap between the two analyses, so a modified Bootstrap method is

used. This is useful for studying the statistical, but not systematic, correlation of

the two analyses.

9.2 Bootstrapping

Bootstrapping methods are very useful for studying confidence intervals in situations

where there are a large number of complex dependencies on physical and experimen-

tal responses. In these cases, an exact analytical form for the parameter of interest

is not known. Bootstrapping is based on the plug-in principle and resampling [112].

The plug-in principle concerns replacing an unknown cumulative distribution func-

tion with an estimate of that parameter, such as the average of the data points.

Resampling is the idea of using the data to approximate the statistical fluctuations

in the parameter of interest. The data events are sampled by pick-and-replace such

1There is one exception to this in the 2 lepton analysis where a different mass window is used
for a tt̄ control region.
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that data points are picked at random and then placed back in the set of events to

be picked from. Some data points will therefore appear multiple times in the final

sampling whilst some will not be represented [113, 114].

This method as stated is not practical for a study of correlation between the V H,H →

bb̄ cut-based and MVA analyses. There are technical issues related to the resam-

pling and problems in building the cut-based and MVA datasets coherently. As

such, a modified bootstrap method is instead employed. The modified bootstrap

method builds coherent pairs of cut-based and MVA pseudodatasets through sam-

pling from the full Monte Carlo Asimov dataset, built with µ̂ = 1. It is important

to preserve the level of statistics that would be available for a real data sample, so

the Monte Carlo events selected for the final pseudodatasets must be unweighted,

but the Monte Carlo event weights must also be taken into account or the pseudo-

datasets would become too unrepresentative.

The modified bootstrap is implemented by randomly sampling a Poisson distribu-

tion for each analysed Monte Carlo event. The Poisson distribution is built with an

expected value, λ, equal to the weight for that specific event. This is statistically

equivalent to resampling because each event is allowed to be picked 0,1,2 etc... times

but is technically more feasible than looping over the final dataset and actually per-

forming resampling. To build the cut-based and MVA pseudodatasets coherently,

the random seed for the Poisson sampling is set to be the Monte Carlo event num-

ber such that events will get the same Poisson weight whichever analysis they are

part of. Each pseudodataset is therefore a subset of the total available Monte Carlo

statistics, with the possibility of double counting. Data driven backgrounds com-

prised of templates, such as the multijet backgrounds in the V H,H → bb̄ search,

can not be included when producing pairs of bootstrap pseudodatasets in this way.

Consistent sets of nominal Monte Carlo and bootstrapped pseudodatasets were



116 CHAPTER 9. CORRELATION OF THE V H,H → BB̄ CUT-BASED AND
MVA ANALYSES

Figure 9.1: Bootstrapping validation plots for regions in the 2-lepton cut-based
analysis, showing the nominal Monte Carlo yield compared to the mean yield of
the bootstrap pseudodatasets. Left: pT(Z) = 120 − 160 GeV, 2 jets both b-tagged
at the loose 80% operating point. Right: pT(Z) = 160 − 200 GeV, 3 jets of which
2 are b-tagged at the tight 50% operating point. The mean, RMS and total yield
is shown in the legend for both the nominal Monte Carlo sample and bootstrap
pseudodatasets.

produced by the groups contributing the three main analysis channels within the

V H,H → bb̄ search [115]. The event selection for the three channels follows the

standard V H,H → bb̄ procedure, more details of which can found in [40], with

a couple of exceptions2. The cut-based fits use dijet invariant mass distributions,

while the MVA fits used boosted decision tree outputs. Both use jet b-tagging weight

distributions, separated into different regions based on the Vector Boson transverse

momentum, pT(V ). The modified bootstrap method is intended to make statistically

similar (and overlapping) pseudodatasets varying about the Monte Carlo expecta-

tion. The average yield of the bootstrap replica pseudodatasets should therefore

be equal to the nominal Monte Carlo yield (within errors) in each fit region. This

has been verified for each set of inputs before the fitting procedure is performed.

Examples of these validation plots are shown for the 2 Lepton analysis in Figures

9.1 and 9.2.

2The Emiss
T triggered 1 Lepton events are not included and the lowest pT(Z) region of the 0

Lepton analysis is omitted.
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Figure 9.2: Bootstrapping validation plots for regions in the 2-lepton MVA analysis
showing the nominal Monte Carlo yield compared to the mean yield of the bootstrap
pseudodatasets. Left: pT(Z) = 0− 120 GeV, 2 jets both b-tagged at the loose 80%
operating point. Right: pT(Z) > 120 GeV, 3 jets of which 2 are b-tagged at the
tight 50% operating point. The mean, RMS and total yield is shown in the legend
for both the nominal Monte Carlo sample and bootstrap pseudodatasets.

9.3 Methodology

To extract the correlation between the cut-based and MVA analyses, each of the

bootstrapped pseudo-datasets from both analyses must be fitted. The fit model

used is the same as described in Chapter 8, where the 1 lepton specific details are

described. The same fit model is used for the 0, 1 and 2 lepton channels as well as

the combination, although some additional nuisance parameters, correlations and

decorrelations are required for this. The additional details and full statement of

the regions used are described in [40]. The channels are fitted both individually

and combined for the full V H,H → bb̄ fit. For each bootstrapped pseudo-dataset,

the pseudo-data are fitted with the nominal Monte Carlo (without the data-driven

multijet templates) to obtain values for the parameter of interest (µ̂), nuisance pa-

rameters and their respective errors. From the values measured in a number of pairs

of cut-based and MVA bootstrap pseudodatasets, the correlation for a particular

parameter can then be calculated. The distributions of µ̂ for the cut-based and

MVA pseudodatasets are shown in Figures 9.3-9.6 for each of the individual chan-

nels as well as the combination of all three. 800 pairs of replicas are used for each

channel while 700 sets of pairs of replicas for the Combined fits. The width of the
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Figure 9.3: Distributions of µ̂ from the bootstrap pseudodataset for the 0 lepton
analysis. Shown for 800 replicas in both the cut-based and MVA analyses.
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Figure 9.4: Distributions of µ̂ from the bootstrap pseudodataset for the 1 lepton
analysis. Shown for 800 replicas in both the cut-based and MVA analyses.

distribution gives some indication as to the statistical resolution of the parameter

in a real data fit.

9.4 Results

The pairs of values for parameters are taken from the cut-based and MVA fit results

for coherent pairs of inputs. These are then plotted together and a correlation value

is calculated. The parameter of interest, µ̂, is the main parameter investigated and
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Figure 9.5: Distributions of µ̂ from the bootstrap pseudodataset for the 2 lepton
analysis. Shown for 800 replicas in both the cut-based and MVA analyses.
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Figure 9.6: Distributions of µ̂ from the bootstrap pseudodataset for the Combined
analysis. Shown for 700 sets of replicas in both the cut-based and MVA analyses.
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Figure 9.7: Correlation of µ̂ from the individual lepton cut-based and MVA boot-
strap pseudodatasets. Shown for 800 pairs of replicas in each channel.

the only parameter for which results are presented here. A large number of nuisance

parameters and background normalisations were investigated, leading to better un-

derstanding of the behaviour of these parameters of the fit. Correlation plots for

some of the normalisations and nuisance parameters are shown in Appendix E. The

scatter plots of µ̂ for the individual channels are shown in Figure 9.7 and for the

Combined fit in Figure 9.8. The correlation values calculated from the scatter plots

are shown on the plots and summarised in Table 9.1 for each of the 3 individual

lepton channels as well as the combination of all three.

It can be seen from Figures 9.7 and 9.8 and from Table 9.1 that the 0 lepton channel

has the highest correlation between the cut-based and MVA analyses, followed by

the 1 lepton whilst the 2 lepton channel is least correlated. The Combined corre-
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Figure 9.8: Correlation of µ̂ from the Combined cut-based and MVA bootstrap
pseudodatasets. Shown for 700 sets of pairs of replicas in each channel.

Lepton Channel Cut-based MVA Correlation
0 0.741
1 0.652
2 0.576

Combined 0.676

Table 9.1: Correlation of the V H,H → bb̄ bootstrapped cut-based and MVA anal-
yses.

lation is close to the average of the correlation in the three individual channels. It

is expected that the 0 lepton channel will have the strongest cut-based MVA cor-

relation as this channel contains the fewest regions, as it does not contain the low

pT(V ) regions present in the other channels. This reduces the potential fluctuations

and leads to a larger commonality between the cut-based and MVA results. The

correlation is believed to be over-estimated here due to the exclusion of the region

pT(Z) = 90− 120 GeV, the inclusion of which would allow for greater fluctuations.

The 2 lepton analysis shows the lowest correlation because the cut-based selected

events are not entirely a subset of the MVA selected events in one of the tt̄ control
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Figure 9.9: Correlation of the tt̄ normalisation factor from the 2 lepton cut-based
and MVA bootstrap pseudodatasets. Shown for 800 sets of pairs of replicas in each
channel.

regions. The regions that strongly constrain tt̄ events are different between the two

analyses. This is validated by the very low level of correlation observed in the 2

lepton tt̄ normalisation as shown in Figure 9.9.

There is some concern that bootstrapping methods contain a bias that reduces the

spread of results due to the statistical similarities of the many replica pseudodatasets,

being drawn as they are from the same pool of events. This would manifest as a

small correlation for a small number of pairs of replicas that grows steadily higher

as more pairs of replicas are introduced. An effect would also likely to be visible in

the way the mean of the parameter evolves with increased pairs of replicas. For this

reason the results were also calculated with a smaller number of replicas. Figure 9.10

shows the measured correlation of µ̂ as a function of the number of replicas used for

each channel. Figure 9.11 shows the mean value of µ̂ as a function of the number of

replicas used. The individual channel results do not appear to show a bias from the
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bootstrapping method, the fluctuations in the correlation merely appear to settle

down as more replicas are added rather than the correlation increasing. From the

Combined correlation as a function of replicas alone, Figure 9.10d, it looks like there

is a bias as the correlation seems to drift upwards. This is in fact just due to large

early downward fluctuations in the individual channels occurring at different num-

bers of replicas. Once the individual channels are stable, the Combined also appears

stable. In Figure 9.11 the 1 lepton, 2 lepton and Combined channels do not reach

a mean µ̂ value of 1.0, which is of some concern as the bootstrap inputs were built

with µ̂ = 1.0 and the validation plots described and shown in Section 9.2 showed

good agreement in all regions, including those with high sensitivity/significance.

The explanation for this is not known but is suspected to be due to failed fits (that

were excluded), which are more likely to happen at extreme true values of µ̂. It is

not understood why either the cut-based or MVA would have a higher value for µ̂.

This shift should not affect the validity of the correlation results.

As mentioned previously, the correlation of errors on parameters from the fit can

also be calculated. This is useful to understand better the stability of the fits. The

correlation of the error on µ̂ in the Combined analysis is calculated to be 0.487 and

the corresponding scatter plot is shown in Figure 9.12. The correlation of the error

on µ̂ is smaller than for µ̂ in all channels. Another interesting parameter to calcu-

late the correlation of is µ̂ divided by the error on µ̂ which gives a crude version

of µ̂ significance. This is not a true value of the significance as it is allowed to be

negative, but provides a useful measurement. The correlation of the µ̂ “significance”

in the Combined channel is calculated to be 0.692, very similar to that of µ̂ and is

shown in Figure 9.13a. Figures 9.13b and 9.14 show the how the correlation and

mean “significance” values change as a function of the number of replicas. It can be

seen in Figure 9.13a that the spread of “significance” values is smaller in the case of

the MVA analysis compared to the cut-based analysis, as well as the MVA analysis

having a much higher average “significance” in Figure 9.14. This is a clear indication

that the MVA analysis is more sensitive than the cut-based analysis, which tallies
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Figure 9.10: Measured correlation of µ̂ for each channel as a function of the number
of sets of pairs of pseudodatasets. Shown for 1 to 700 sets of pseudodatasets for
each channel and for the combined.



125 CHAPTER 9. CORRELATION OF THE V H,H → BB̄ CUT-BASED AND
MVA ANALYSES

Number of Replicas
100 200 300 400 500 600 700

 M
ea

n
µ

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

 Cutµ
 MVAµ

(a) 0 lepton

Number of Replicas
100 200 300 400 500 600 700

 M
ea

n
µ

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Cutµ
 MVAµ

(b) 1 lepton

Number of Replicas
100 200 300 400 500 600 700

 M
ea

n
µ

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

 Cutµ
 MVAµ

(c) 2 lepton

Number of Replicas
100 200 300 400 500 600 700

 M
ea

n
µ

0.8

0.9

1

1.1

1.2

1.3

1.4

 Cutµ
 MVAµ

(d) Combined

Figure 9.11: Measured mean of µ̂ for each channel in the cut-based and MVA
analyses as a function of the number of sets of pairs of pseudodatasets. Shown
for 1 to 700 sets of pseudodatasets for each channel.
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Figure 9.12: Correlation of the error on µ̂ from the Combined cut-based and MVA
bootstrap pseudodatasets. Shown for 700 sets of pairs of replicas in each channel.

to a very close degree to results from Asimov fits.

9.5 Consistency of the Cut-based and MVA Results

The correlation study provides information useful for estimating the consistency of

the results obtained from the cut-based and MVA fits. The correlation results were

in place by the time the V H,H → bb̄ results were unblinded so could be used to

assess the consistency of each single lepton channel as well as the Combined results.

The unblinded data results in each channel are shown in Figure 9.15 in comparison

to the bootstrap replicas results shown previously. The values for µ̂ and the differ-

ence between the cut-based and MVA values are summarised in Table 9.2.

The value of the µ̂ correlation and the differences in µ̂ shown in Table 9.2 provide
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Figure 9.13: Correlation of “significance”: µ̂/error on µ̂ from the Combined cut-
based and MVA bootstrap pseudodatasets. Left: For 700 sets of pairs of replicas
in each channel. Right: Shown as a function of the number sets of pairs of pseudo-
datasets from 1 to 700 sets.
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Figure 9.14: Measured mean of µ̂/error on µ̂ for the Combined cut-based and MVA
analyses as a function of the number of sets of pairs of pseudodatasets. Shown for
1 to 700 sets of pairs of pseudodatasets.



128 CHAPTER 9. CORRELATION OF THE V H,H → BB̄ CUT-BASED AND
MVA ANALYSES

 cut-basedµ
-1 0 1 2 3

 M
V

A
µ

-1

0

1

2

3
Bootstrap
Data

Correlation: 0.741

(a) 0 lepton

 cut-basedµ
-1 0 1 2 3

 M
V

A
µ

-1

0

1

2

3 Bootstrap
Data

Correlation: 0.652

(b) 1 lepton

 cut-basedµ
-2 -1 0 1 2 3 4 5

 M
V

A
µ

-2

-1

0

1

2

3

4

5

Bootstrap
Data

Correlation: 0.576

(c) 2 lepton

 cut-basedµ
-0.5 0 0.5 1 1.5 2

 M
V

A
µ

-0.5

0

0.5

1

1.5

2
Bootstrap
Data

Correlation: 0.676

(d) Combined

Figure 9.15: Distribution of µ̂ pairs from the individual lepton and Combined cut-
based and MVA bootstrap pseudodatasets compared to the data result. Shown for
800 pairs of replicas in each individual lepton channel and 700 pairs for the Combined
analysis. Bootstrap replicas are shown as black points with the data results marked
in red.

Channel µ̂ Cut µ̂ MVA µ̂ Cut - µ̂ MVA
0 0.249 -0.215 0.464
1 2.741 1.361 1.38
2 0.419 0.962 -0.543

Combined 1.230 0.651 0.579

Table 9.2: Values of the observed µ̂ value from data for each of the V H,H → bb̄
channels. Values are shown for the cut-based and MVA analyses, as well as giving
the difference between the two.
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one way of estimating the consistency, but this is incomplete without an estimate of

the difference expected between the the cut-based and MVA µ̂ values. The differ-

ence between the bootstrap replica µ̂ values (cut-based - MVA) is shown in Figure

9.16. The difference between the data results can then be compared to the standard

deviation of the fits to these distributions. The distribution of µ̂ difference is as-

sumed to be centred about 0 and symmetrical for the purpose of the estimate. From

this the number of standard deviations away from 0 that the data results are can

be used as the z value in a two-tailed normal distribution to find the probability of

getting at least as extreme a value as is observed. A two-tailed calculation is used

because it does not matter which value is higher, only the absolute difference. This

calculation yields a probability, or consistency estimate, of 36.75% in the 0 lepton

channel, 1.51% in the 1 lepton, 55.12% in the 2 lepton and 13.30% for the Combined

fit.

The analysis of the bootstrapped pseudodatasets provided a useful way to study the

statistical correlation between the cut-based and MVA V H,H → bb̄ analyses. The

correlations of the three individual channels as well as in the Combination have been

calculated, all of which show a high degree of correlation. By evaluating the expected

difference between the cut-based and MVA µ̂ values, the statistical consistency of

the values obtained from data has been estimated.
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(a) 0 lepton (b) 1 lepton

(c) 2 lepton (d) Combined

Figure 9.16: Distributions of the difference between the cut-based and MVA µ̂ values
from the pairs of bootstrap pseudodatasets. The black lines show the difference
observed in data.



CHAPTER 10

Results For The Search For WH → `νbb̄

The Emiss
T triggered and Combined WH → `νbb̄ cut-based and MVA analyses distri-

butions described in Chapter 7 are fitted using the fit model described in Chapter 8

to extract results for the signal strength, the upper limit on the signal strength and

the significance of any observed signal. As the background and signal normalisations

are allowed to float in the fits, the distributions in each of the fit regions change from

prefit to postfit. The postfit distributions for the Emiss
T triggered regions fitted on

their own are shown in Section 10.1, while the postfit distributions for the Combined

analysis, in which the Emiss
T triggered regions are merged with the Nominal (single

lepton triggers) regions are shown in Appendix D. The results obtained from the

Emiss
T triggered cut-based and MVA fits are described in Section 10.2 and the results

from the Combined fits in Section 10.3. For reference, the results obtained from the

Nominal fits, not using the Emiss
T triggered regions, can be found in Appendix C.
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10.1 Postfit Emiss
T Triggered WH → `νbb̄ Regions

The postfit distributions for the regions used in the Emiss
T triggered Cut-based anal-

ysis are shown in Figures 10.1 - 10.7 and for the MVA analysis in Figures 10.8 -

10.10. Each plot shows both the data, as points with error bars, and the post-

fit Monte Carlo, as stacked histograms. The statistical uncertainty on the data

is represented by the error bars on the points and the total postfit statistical and

systematic uncertainty on the Monte Carlo is represented by the shaded area. The

blue dashed line represents the prefit total background yield, as shown in the prefit

stacked plots in Chapter 7. The expected Higgs signal is shown both stacked on top

of the stacked background histograms normalised to the standard model expected

cross section times branching ratio and unstacked as an unfilled red line. The un-

stacked signal is scaled by a factor shown in the legend, chosen by an algorithm

separately in each region to ensure it is visible on the scale of the plot. Each plot

contains, below the main axes, the ratio of the data yield to the postfit background

plus signal expectation.

The description of the choice of binning can be found in Chapter 8. Some of the

bins contain very low statistics so large fluctuations are evident. This is especially

true for regions where the expected number of events per bin is below 1. The postfit

description of the data by the MC is reasonable when accounting for the systematic

and statistical uncertainties. The agreement is better than it was prefit (shown as

the blue dashed line in each plot) because the background normalisations are allowed

to float in the fit. The total uncertainty on the MC expectation in each bin is reduced

from the prefit value. This is due to the fit constraining the uncertainties of some

individual nuisance parameters, as was shown in Figures 8.1 and 8.2, which reduces

their potential effect. In the cut-based analysis, the higher pT(W ) regions contain

slightly less signal than the lower ones but considerably lower background leading to

higher sensitivity in these regions. The lower pT(W ) regions contribute more to the

background normalisations as discussed previously. For both cut-based and MVA
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analyses, the signal statistics are higher in the stricter b-tagging categories and the

background much lower.
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Figure 10.1: Postfit distributions of the dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 2-jet pT(W ) = 120− 160 GeV regions, split into b-tagging categories. The data
is shown as points with error bars and the postfit Monte Carlo background yield is shown
as a stacked histogram. The uncertainty on the total background yield is represented as
a shaded area and the prefit total background yield is shown as a blue dashed line. The
expected Higgs signal, from a sample at mH = 125 GeV, is shown both stacked on top
of the background histograms at the Standard Model expectation and un-stacked, but
scaled, by a factor stated in the legend. The lower part of each plot shows the ratio of the
data yield to the postfit background and signal prediction.



134 CHAPTER 10. RESULTS FOR THE SEARCH FOR WH → `νBB̄

50 100 150 200 250

E
v
e

n
ts

 /
 3

0
.0

 G
e

V

5

10

15

20

25

30
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
W+hf
W+cl
W+l
Uncertainty
Pre­fit background

32×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Loose tags

<200 GeV
V

T
160<p

 [GeV]bbm

50 100 150 200 250D
a

ta
/P

re
d

0

1
2

(a) 2 Loose Tags

50 100 150 200 250
E

v
e

n
ts

 /
 3

0
.0

 G
e

V
0

2

4

6

8

10

12

14
Data 2012

=1.0)µVH(bb) (
Diboson
tt

Single top
W+hf
W+cl
W+l
Z+hf
Uncertainty
Pre­fit background

8×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Medium tags

<200 GeV
V

T
160<p

 [GeV]bbm

50 100 150 200 250D
a

ta
/P

re
d

0.5
1

1.5

(b) 2 Medium Tags

50 100 150 200 250

E
v
e

n
ts

 /
 3

0
.0

 G
e

V

0

1

2

3

4

5

6

7

8

9 Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
W+hf
Z+hf
Uncertainty
Pre­fit background

3×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

<200 GeV
V

T
160<p

 [GeV]bbm

50 100 150 200 250D
a

ta
/P

re
d

0.5

1

1.5

(c) 2 Tight Tags

Figure 10.2: Postfit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 2-jet pT(W ) = 160− 200 GeV regions. The format is the same as Figure 10.1.
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Figure 10.3: Postfit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 2-jet pT(W ) > 200 GeV regions. The format is the same as Figure 10.1.
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Figure 10.4: Postfit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 3-jet pT(W ) = 120− 160 GeV regions. The format is the same as Figure 10.1.
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Figure 10.5: Postfit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 3-jet pT(W ) = 160− 200 GeV regions. The format is the same as Figure 10.1.
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Figure 10.6: Postfit distributions of dijet invariant mass, mbb, in the cut-based Emiss
T

triggered 3-jet pT(W ) > 200 GeV regions. The format is the same as Figure 10.1.
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Figure 10.7: Postfit distributions of the b-tagging weight, MV 1c, in the cut-based Emiss
T

triggered 1-tag 2-jet and 3-jet pT(W ) > 120 GeV regions. The format is the same as
Figure 10.1.
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Figure 10.8: Postfit distributions of the BDT output in the MVA Emiss
T triggered 2-jet

pT(W ) > 120 GeV regions. The format is the same as Figure 10.1.
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Figure 10.9: Postfit distributions of the BDT output in the MVA Emiss
T triggered 3-jet

pT(W ) > 120 GeV regions. The format is the same as Figure 10.1.
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Figure 10.10: Postfit distributions of the b-tagging weight, MV 1c, in the MVA Emiss
T

triggered 1-tag 2-jet and 3-jet pT(W ) > 120 GeV regions. The format is the same as
Figure 10.1.
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10.2 Emiss
T Triggered WH → `νbb̄ Results

The Emiss
T triggered dataset is fitted against the background expectation and each

signal hypothesis, from mH = 100 GeV to 140 GeV in steps of 5 GeV excluding

105 GeV, to extract results at each mass point. Most results are produced at each

mass point but the final quoted results for the signal strength and significance will

be for a signal hypothesis at mH = 125 GeV.

The 95% CL upper bounds for the cross section times branching ratio for the

WH → `νbb̄ decay mode are obtained at each mass point and are shown in Ta-

ble 10.1 and Figure 10.11a for the cut-based analysis and in Table 10.2 and Figure

10.11b for the MVA analysis. The tables include the observed limit from data, the

expected limit, which is obtained from a fit to the Asimov dataset, and the ±1,±2σ

shifts from the expected limit, using the Asimov dataset shifted by ±1,±2σ. These

are represented in Figure 10.11 by a solid line with points for the observed, a dashed

line for the expected, a green band covering the ±1σ shift from the expected and

the yellow band covering the ±2σ shift. The results produced for the MVA analysis

use BDT output weights from the training at mH = 125 GeV at all masses.

To understand how significant any deviation from the background expectation is,

the local p0 is calculated. This is the probability for the background to fluctuate

upwards at least as much as is observed in the data. A small expected/observed

p0 means that it would require a large statistical excess of background events to

replicate that result. The observed p0 can be compared to the expected p0 obtained

from a fit to Asimov dataset, including the signal at a signal strength of µ̂ = 1.0.

Expected and observed p0 values are listed for each mass point for the cut-based and

MVA analyses in Table 10.3 and shown in Figure 10.12. The solid black line repre-

sents the observed while the dotted blue line represents the expected. The local p0

is shown at each mass point with horizontal bands translating this into a significance.
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The observed µ̂ value for the cut-based analysis is µ̂Cut = 1.617+2.051
−1.694(stat.)+1.264

−0.957(syst.)

and for the MVA analysis is µ̂MVA = −0.231+1.859
−1.565(stat.)+0.990

−0.872(syst.). The observed

(expected) significance in the cut-based analysis is 0.815 (0.504) and in the MVA

analysis is -0.111 (0.508).

Due to the large number of signal regions used in the fit, it is hard to visualise any

excess or deficit of events in any individual region. For this reason all the fit regions

have been combined together in Figure 10.16. To combine together all bins in all fit

regions that contain different variables (di-b-jet mass and b-tagging weight), it is not

the value of the bin but instead bins are combined based on the metric of log10(S/B)

in each bin where S and B are the signal and background yield in that particular

bin. The full yield of signal, background and data from all bins within a range for

log10(S/B) are combined into a single bin in Figure 10.16. All yields used are postfit.

The lower portion of the plot shows the ratio of data to the postfit background

yield as points with statistical errors and a red line representing the expected ratio

in the presence of a standard model Higgs signal at a signal strength of µ̂ = 1.0.

The red line therefore represents the yields of background plus signal divided by

background. By comparing where the data points fall relative to the black dotted

line at Data/Pred = 1.0 and the red line, it can seen whether there is an excess or

deficit in data and how consistent the observation is with the background only or

signal hypotheses. The points showing the largest discrepancy give an indication of

the sensitivity of the regions contributing to the excess/deficit.
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mH (GeV) Exp. +2σ +1σ −1σ −2σ Obs.
100 2.34 4.36 3.25 1.68 1.25 2.74
110 2.94 5.49 4.09 2.12 1.58 4.13
115 3.34 6.23 4.65 2.41 1.79 3.64
120 4.03 7.51 5.61 2.90 2.16 5.00
125 4.79 8.93 6.66 3.45 2.57 6.28
130 5.88 10.97 8.19 4.24 3.16 6.81
135 7.69 14.35 10.71 5.54 4.13 8.65
140 10.51 19.60 14.62 7.57 5.64 15.10

Table 10.1: Expected and observed limits from the 95% CL upper bound on the cross
section times branching ratio as a function of mH for the Emiss

T triggered cut-based
analysis. Values are expressed as a multiple of the standard model expectation. The
±1σ and ±2σ shifts from the expected values are also shown.

mH (GeV) Exp. +2σ +1σ −1σ −2σ Obs.
100 4.15 7.74 5.77 2.99 2.23 4.06
110 3.71 6.92 5.16 2.67 1.99 3.63
115 3.59 6.69 4.99 2.59 1.93 3.76
120 3.83 7.15 5.33 2.76 2.06 3.63
125 4.41 8.23 6.14 3.18 2.37 4.30
130 5.85 10.91 8.14 4.21 3.14 6.78
135 8.59 16.03 11.96 6.19 4.61 9.14
140 14.77 27.56 20.56 10.64 7.93 14.08

Table 10.2: Expected and observed limits from the 95% CL upper bound on the
cross section times branching ratio as a function of mH for the Emiss

T triggered MVA
analysis. Values are expressed as a multiple of the standard model expectation. The
±1σ and ±2σ shifts from the expected value are also shown.

mH (GeV) Exp p0 Obs p0

100 0.16416 0.40774
110 0.20906 0.24992
115 0.23813 0.53022
120 0.2808 0.28994
125 0.30697 0.20762
130 0.33456 0.32048
135 0.37451 0.37073
140 0.40219 0.21048

(a) Cut-based analysis

mH (GeV) Exp p0 Obs p0

100 0.30826 0.56826
110 0.27624 0.53454
115 0.26666 0.46782
120 0.27956 0.57875
125 0.30374 0.5501
130 0.34956 0.37092
135 0.39624 0.45704
140 0.44161 0.62789

(b) MVA analysis

Table 10.3: Expected and observed local p0 values as a function of mH for the Emiss
T

triggered cut-based and MVA analyses.
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(a) Cut-based analysis
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Figure 10.11: Expected and observed limits from the 95% CL upper bound on
the cross section times branching ratio as a function of mH for the Emiss

T triggered
analyses. Values are expressed as a multiple of the standard model expectation.
The observed values are shown as a solid line while the expected values, for the
background-only case, are shown as a dashed line with the green and yellow shaded
areas representing the ±1σ and ±2σ shifts from the central expected value. The
grey dashed line represents the Standard Model value of µ̂ = 1.0.
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Figure 10.12: Expected and observed local p0 values as a function of mH for the
Emiss

T triggered analyses. The observed values are shown as a solid line while the
expected values, for a standard model Higgs Boson, are shown as a blue dashed
line. Each expected and observed value is calculated using the signal sample at
that particular value of mH . The horizontal dashed lines convert the p0 values to
significance values.
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Figure 10.13: Yields ordered by log10(S/B) for the Emiss
T triggered cut-based and

MVA analyses. The bins from all signal regions are combined into bins based on
the calculated log10(S/B) from the postfit background event yields and the expected
signal yield. The lower part of each plot shows, through the ratio of data to predic-
tion, the statistical pull of the data as points along with the expected pull from the
Standard Model expectation as a red line.
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10.3 Combined WH → `νbb̄ Results

The Combined dataset, the merging of the Emiss
T triggered and Nominal single lep-

ton triggered datasets, is fitted in the same way as the Emiss
T triggered for the same

range of hypothesised Higgs masses as was described in Section 10.2.

The set of results that was produced for the Emiss
T triggered cut-based and MVA

analyses is also produced for the Combined cut-based and MVA analyses. The

description of the methods used to produce the results, the categories in tables and

the contents of figures are the same as in Section 10.2. The limits, as a function

of mH , on the cross section times branching ratio are shown in Table 10.4 and

Figure 10.14a for the cut-based analysis and Table 10.5 and Figure 10.14b for the

MVA analysis. The local p0, as a function of mH , is shown for the cut-based and

MVA analyses in Table 10.6 and Figure 10.15. All bins from all fit regions in the

cut-based and MVA analyses are combined (separately for the cut-based and MVA

analyses) based on the value of log10(S/B) in each bin in Figure 10.16. The observed

µ̂ value for the cut-based analysis is µ̂Cut = 2.316+0.670
−0.646(stat.)+0.723

−0.608(syst.) and for the

MVA analysis is µ̂MVA = 1.231+0.538
−0.511(stat.)+0.499

−0.425(syst.). The observed (expected)

significance in the cut-based analysis is 2.759 (1.295) and in the MVA analysis is

1.905 (1.534).
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mH (GeV) Exp. +2σ +1σ −1σ −2σ Obs.
100 0.81 1.52 1.13 0.59 0.44 1.18
110 0.99 1.85 1.38 0.72 0.53 1.73
115 1.09 2.04 1.52 0.79 0.59 2.01
120 1.28 2.38 1.78 0.92 0.69 2.83
125 1.65 3.08 2.30 1.19 0.89 4.01
130 2.04 3.80 2.83 1.47 1.09 4.24
135 2.64 4.93 3.68 1.91 1.42 4.53
140 3.74 6.99 5.21 2.70 2.01 5.99

Table 10.4: Expected and observed limits from the 95% CL upper bound on the
cross section times branching ratio as a function of mH for the Combined cut-based
analysis. Values are expressed as a multiple of the Standard Model expectation.
The ±1σ and ±2σ shifts from the central expected values are also shown.

mH (GeV) Exp. +2σ +1σ −1σ −2σ Obs.
100 1.54 2.87 2.14 1.11 0.83 2.78
110 1.30 2.43 1.81 0.94 0.70 2.09
115 1.09 2.03 1.51 0.78 0.58 1.91
120 1.15 2.15 1.61 0.83 0.62 2.02
125 1.36 2.54 1.89 0.98 0.73 2.50
130 1.83 3.42 2.55 1.32 0.98 3.06
135 2.81 5.24 3.91 2.02 1.51 5.62
140 5.34 9.96 7.43 3.85 2.86 9.33

Table 10.5: Expected and observed limits from the 95% CL upper bound on the
cross section times branching ratio as a function of mH for the Combined MVA
analysis. Values are expressed as a multiple of the Standard Model expectation.
The ±1σ and ±2σ shifts from the central expected values are also shown.

mH (GeV) Exp p0 Obs p0

100 0.00751 0.13534
110 0.02021 0.08398
115 0.03104 0.06559
120 0.05237 0.0165
125 0.09766 0.0029
130 0.14747 0.01106
135 0.20927 0.05493
140 0.28367 0.12549

(a) Cut-based analysis

mH (GeV) Exp p0 Obs p0

100 0.09234 0.0366
110 0.05888 0.07839
115 0.02893 0.04006
120 0.03528 0.0353
125 0.0612 0.02665
130 0.12424 0.05262
135 0.21962 0.01338
140 0.34719 0.0531

(b) MVA analysis

Table 10.6: Expected and observed local p0 values as a function of mH for the
Combined cut-based and MVA analyses.
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(a) Cut-based analysis
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Figure 10.14: Expected and observed limits from the 95% CL upper bound on the
cross section times branching ratio as a function of mH for the combined analyses.
Values are expressed as a multiple of the Standard Model expectation. The observed
values are shown as a solid line, while the expected values, for the background only
case, are shown as a dashed line with the green and yellow shaded areas representing
the ±1σ and ±2σ shifts from the central expected values.
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Figure 10.15: Expected and observed local p0 values as a function of mH for the
Combined analyses. The observed values are shown as a solid line while the expected
values, for a Standard Model Higgs Boson, are shown as a blue dashed line. Each
expected and observed value is calculated using the signal sample at that particular
value of mH . The horizontal dashed lines convert the p0 values to significance values.
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Figure 10.16: Yields ordered by log10(S/B) for the Combined cut-based and MVA
analyses. The bins from all signal regions are combined into bins based on the cal-
culated log10(S/B) from the postfit background event yields and the expected signal
yield. The lower part of each plot shows, through the ratio of data to prediction, the
statistical pull of the data as points along with the expected pull from the Standard
Model expectation as a red line.
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10.4 Discussion of Results

A summary of the results is provided in Table 10.7 and Table 10.8 for the Emiss
T

triggered and Combined analyses, respectively. Results are shown for both the cut-

based and MVA analyses at a hypothesised Higgs mass of mH = 125 GeV. The

values shown are the 95% CL upper limits on the signal strength, µ̂, where the fit

is performed using the Asimov dataset, both excluding and including systematics,

and the real datasets as well as the significances obtained from the Asimov and real

datasets. The observed central value for the signal strength, µ̂, is also included but

with the statistical and systematic errors combined in quadrature to give a single

error.

Cut-based MVA
Stat-Only Expected Limit 4.168 3.783

Systematics Expected Limit 4.788 4.414
Systematics Observed Limit 6.281 4.303

Expected Significance 0.504 0.508
Observed Significance 0.815 -0.111

µ̂ 1.617+2.409
−1.946 −0.231+2.106

−1.792

Table 10.7: Summary of the main Emiss
T triggered cut-based and MVA fit results at

95% CL.

Cut-based MVA
Stat-Only Expected Limit 1.195 1.022

Systematics Expected Limit 1.654 1.369
Systematics Observed Limit 4.012 2.507

Expected Significance 1.295 1.534
Observed Significance 2.759 1.905

µ̂ 2.316+0.986
−0.886 1.231+0.733

−0.665

Table 10.8: Summary of the main Combined cut-based and MVA fit results at 95%
CL.
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10.4.1 Expected Results

The Emiss
T trigger cut-based and MVA analyses provide only weak expected 95%

CL upper limits on the cross-section times branching ratio of the WH,H → bb̄

process, 4.788 and 4.414, respectively. The MVA analysis is more sensitive than

the cut-based, giving a gain of 7.3% in the expected limit, so it is the MVA that

should be considered as the stronger of the two irrespective of any observed result.

The expected values for the MVA are lower, and therefore more sensitive, only for

the 120 GeV, 125 GeV, 130 GeV because all masses use the BDT weights trained

using the 125 GeV signal sample. Using a training at each mass point to produce re-

sults for that mass point should improve the sensitivity of all but the 125 GeV mass

point (where this is already true) but requires much larger technical overheads. The

expected significance of the MVA is less than a percentage point higher than the cut-

based (0.508 compared to 0.504) but neither reach an expected significance above

1σ for any of the mass region, as can be seen from the p0 plots in Figures 10.12a and

10.12b. The Emiss
T triggered analyses suffer from poor background constraints as can

be seen by the high ranking of the nuisance parameters associated with background

normalisations in Figure 8.4 from Chapter 8. The other main problem present in the

Emiss
T triggered analyses is the lower signal statistics than in the Nominal analyses,

causing a large statistical error on final results. Despite the lower sensitivity of the

Emiss
T triggered analyses, they still present valuable additional statistics for studying

Higgs production and decay in this mode.

The main motivation behind the Emiss
T triggered analyses was not to use them to

produce results in isolation from the Nominal analyses, but to instead combine them

to increase the sensitivity of the Nominal analysis. This has been done by increasing

the signal statistics in the most sensitive regions, at high pT(W ). The Combined

analyses have sensitivity close to the Standard Model expected signal, providing

expected 95% CL upper limits of 1.654 for the cut-based and 1.369 for the MVA.

Both analyses reach closer to 1 at lower Higgs masses. As was the case for the Emiss
T
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triggered analyses, the sensitivity of the MVA analysis would be improved at masses

other than 125 GeV by using the BDT training from each mass. The MVA analysis

has a higher sensitivity, giving a 17.2% better expected limit, than the cut-based so

should be considered the main result, as in the case of the Emiss
T triggered analyses.

The expected significance of the MVA analysis is 18.5% higher than the cut-based at

mH = 125 GeV. The MVA analysis has an expected significance between 1σ and 2σ

for most of the mass range while the cut-based analysis goes above 2σ for low masses.

The Emiss
T triggered analyses alone are not sensitive enough to distinguish the sig-

nal hypothesis from the background-only hypothesis. However, the Emiss
T triggered

analyses are very important in improving the sensitivity of the WH search. The

Combined cut-based and MVA analyses are more sensitive than the Nominal anal-

yses shown in Appendix C, due to the addition of the Emiss
T triggered events, an

increase in sensitivity of 5.1% for the Cut-based analysis and 6.2% for the MVA

analysis. This improvement is greater than many of the analysis techniques used

in these analyses. The Combined MVA analysis shows the best sensitivity in the

search for the WH → `νbb̄ decay mode so should be considered the strongest WH

result. The expected significance of 1.4 in the Nominal analysis (from Appendix C)

is improved to 1.5 in the Combined analysis due to the additional yield from the

Emiss
T triggered analyses.

10.4.2 Observed Results

The Emiss
T triggered cut-based dataset shows an excess above the background-only

expectation, larger than the expected signal from a standard model Higgs boson

with a mass of 125 GeV and gives a signal strength µ̂ = 1.617 at mH = 125 GeV.

The Emiss
T triggered MVA dataset shows a deficit below the background expectation

and gives a signal strength µ̂ = −0.231 at mH = 125 GeV. The cut-based analysis

therefore has a weaker than expected limit on the cross-section times branching of

WH → `νbb̄ across the full mass range and the MVA slightly stronger than expected
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as shown in Figure 10.11. The excess in the cut-based analysis causes the observed

p0 to be close to the expected for the majority of the mass region, as shown in Figure

10.12a, with the smallest observed p0 being 0.20762 at mH = 125 GeV compared to

an expected value of 0.30697 and giving a significance of 0.815. The deficit in the

MVA analysis causes a higher p0 to be observed than is expected for the entire mass

range, as shown in Figure 10.12b, with the smallest observed p0 being 0.37092 at

mH = 130 GeV compared to an expected value of 0.34956. At mH = 125 GeV the

observed (expected) p0 is 0.5501(0.30374). The observed p0 going above 0.5 means

that the data looks like a downward fluctuation of the background, an opposite effect

to the signal expectation. A p0 above 0.5 is interpreted as a negative significance,

in this case yielding a significance of -0.111.

The source of the excess and deficit in the Emiss
T triggered analyses can be seen in

Figure 10.16. In the cut-based analysis the portion with the highest S/B, the last

filled bin, shows an excess above the background larger than the Standard Model

signal expectation. The excess can not be seen in individual analysis regions or bins,

as the bins that contribute to the highest S/B region have very low (< 1) expected

yields. In the MVA analysis the highest S/B bin, the last filled bin, contains 3 data

events, which fall almost exactly on the background-only expectation, while the next

two, lower S/B, bins have a deficit compared with the background expectation.

The Combined cut-based dataset shows an excess above the background expectation

larger than the expected signal from a standard model Higgs boson with a mass of

125 GeV and gives a signal strength µ̂ = 2.316 at mH = 125 GeV. The Combined

MVA dataset shows an excess above the background expectation similar to the ex-

pected signal from a standard model Higgs boson with a mass of 125 GeV and gives

a signal strength µ̂ = 1.231 at mH = 125 GeV. This causes weaker than expected

limits to be set on the cross section times branching ratio of the WH → `νbb̄ for both

analyses as shown in Figure 10.14. The cut-based observed limit is high across most

of the mass range due to the wide resolution of the di-b-jet mass and furthest from

the expected at mH = 125 GeV where the observed (expected) limit is 4.01 (1.65)
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times the standard model expectation. The observed MVA limit is close to the +2σ

error from the expected throughout the full mass range with an observed (expected)

limit of 2.50 (1.36) at mH = 125 GeV. The resolution of the different Higgs mass

MVA distributions has not been tested so it is not known whether it is expected that

a signal at mH = 125 GeV would cause the broad excess observed. There is a large

excess in the cut-based analysis, which causes a much smaller than expected p0 for

much of the mass range, as shown in Figure 10.15a, with the smallest being 0.0029

at mH = 125 GeV compared to an expected value of 0.09766, which gives an overall

observed significance of 2.759. The broad excess in the MVA analysis leads to low

observed p0 values across the full mass range, much of which is below the expected,

as shown in Figure 10.15b. The observed p0 is 0.01338 at mH = 135 GeV compared

to an expected value of 0.21962. The observed (expected) p0 at mH = 125 GeV is

0.02665 (0.0612), which gives an observed significance of 1.905.

The source of the excess in each of the Combined analyses can be seen in Figure

10.16. In the cut-based analysis the largest difference between data and background

expectation occurs in the bin with the highest S/B, the last filled bin, where the

data falls higher than the background and Standard Model signal expectation with

an excess also observed in the third bin from the right. The MVA analysis has an

excess in the bin with the highest S/B, the last filled bin, although the next two

bins are very close to the background expectation. The excess is from analysis bins

with a very high S/B where the approximately 1 additional data event is very sig-

nificant. The main result from the Combined MVA analysisis µ̂ = 1.231+0.733
−0.665 with

an observed significance of 1.905. This result is closer to the Standard Model signal

hypothesis than the background-only hypothesis but is still not inconsistent with

the background only.

The consistency of the Combined cut-based and MVA analyses can be evaluated

using the method described in Chapter 9. Bootstrapped pseudodatasets were not

produced for the Emiss
T triggered analyses so for this estimate the value for the
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Nominal analysis will be used. It is therefore assumed that the correlation for the

Combined is distributed in the same way as for the Nominal. The difference between

the values of µ̂ from the cut-based and MVA analyses is 1.085, which is compared

to the standard deviation of the difference of the bootstrapped Nominal analyses,

calculated previously in Section 9.5 to be 0.568. This gives a 1.91σ difference between

the cut-based and MVA analysis, a two tailed consistency of 5.6%.

10.5 Comparison of Results

The main result obtained from the Combined MVA analysis can be compared to

existing results in this channel as well as global Higgs searches and measurements.

The final Tevatron result was a combination between all V H,H → bb̄ channels from

both CDF and D0 and measured a signal strength of µ̂ = 1.59+0.69
−0.72 with 2.8 σ sig-

nificance at mH = 125 GeV [23]. This appears to be compatible with the result

presented in this chapter but the comparison is not especially helpful because of the

very different energy and initial state (pp̄ compared to pp). The calculations that

go into the Standard Model prediction for the Tevatron case compared to the LHC

are somewhat different so cannot be directly compared. A comparison with current

results from ATLAS and CMS is more helpful.

The observed signal strength for each of the V H,H → bb̄ channels as well as the

combination observed by ATLAS and CMS separately are shown in Figure 10.17.

The global picture of Higgs signal strength was shown in Section 2.4: ATLAS has

a combined signal strength of µ̂ = 1.30+0.18
−0.17 and CMS has a corresponding value of

µ̂ = 1.00± 0.13. The result presented here of µ̂ = 1.23+0.73
−0.67 is closer to the ATLAS

combined result but the error band covers both the ATLAS and CMS combined

results.
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Figure 10.17: Signal strengths observed by ATLAS and CMS for the V H,H → bb̄
decay modes, expressed as a multiple of the Standard Model expectation [40, 41].

10.5.1 Position within ATLAS V H

ATLAS measures a signal strength µ̂ = 1.17+0.66
−0.66 for WH → `νbb̄ which, when com-

bined with ZH → ννbb̄ and ZH → ``bb̄, gives a signal strength for V H,H → bb̄

of µ̂ = 0.51+0.41
−0.37 [40]. The result presented here is a part of that result so a full

comparison is not particularly valid. The ATLAS result contains both 7 TeV and 8

TeV analyses, whereas the result presented here is based only on 8 TeV data. The

ATLAS result has some pull from the 7 TeV dataset as well as the pulls from the

background normalisations in the ZH → ννbb̄ and ZH → ``bb̄ channels, but the

majority of the events that strongly contribute to the result are the same. The

movement of µ̂ due to these pulls is not large so the result presented here is very

close to the ATLAS WH cross section times branching ratio within the full V H

analysis.

The full V H,H → bb̄ result of µ̂ = 0.51+0.41
−0.37 is fairly different to the result presented

in this chapter due to the downward pull of the other two V H,H → bb̄ channels but

is consistent within errors. The ATLAS result for the 3 channels combined gives an

observed (expected) significance of 1.4 (2.6) while the result presented here has an
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observed (expected) significance of 1.9 (1.5). The ATLAS analysis is clearly more

sensitive due to the addition of both ZH decay modes, but as these pull the WH

mode downwards, the observed significance is lower.

10.5.2 Comparison to CMS V H

CMS measures a signal strength of µ̂ = 1.1± 0.9 for WH → (`ν, τν)bb̄ which, when

combined with ZH → ννbb̄ and ZH → ``bb̄, gives a signal strength for V H,H → bb̄

of µ̂ = 1.0 ± 0.5 [41]. The CMS WH,H → bb̄ and combined V H,H → bb̄ results

are very consistent with the result presented here, the WH,H → bb̄ having only a

small difference in the observed signal strength and well within errors. The CMS

WH result has an observed (expected) significance of 1.4 (1.3). This is slightly

worse than the expected limit of 1.4 obtained using the ATLAS Nominal 8 TeV

WH analysis only, as shown in Table C.4 in Appendix C. The addition of the Emiss
T

triggered regions gains approximately a further 8% in sensitivity, on top of the

already better ATLAS sensitivity, which is not a technique used by CMS.

10.6 Conclusion

The Emiss
T triggered analyses have been shown to be useful for recovering events lost

in the Nominal WH analyses but do not produce sensitive results on their own.

The Emiss
T triggered analyses do, however, provide an important improvement in the

sensitivity of the Nominal analyses when merged together to produce the Combined

analyses. The Combined MVA analysis is the most sensitive of the different analyses,

having an expected limit of 1.369 and an expected significance of 1.534 at mH =

125 GeV. This analysis measures a signal strength µ̂ = 1.231+0.733
−0.665 with an observed

significance of 1.905. This result is most consistent with the standard model signal

hypothesis but does not exclude the background-only hypothesis. The V H analyses
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are not sensitive enough with the Run I 7 TeV and 8 TeV datasets to make a

significant observation of these decay modes. The upcoming Run II data at a higher

centre-of-mass energy will therefore be required to make a concrete statement on

V H,H → bb̄ production and will probably need to be combined with the Run I data.

All current analysis techniques, including the use of the Emiss
T triggered events, will

be required as well as possible improvements. The prospects for V H measurements

(using only the WH → `νbb̄ and ZH → ``bb̄ modes) in Run II are outlined in [116].

The expected significance for a dataset of 300 fb−1 is 3.9 σ with an expected error

of 25% on the value of µ̂.



CHAPTER 11

Summary and Conclusions

This thesis contains a search for the Standard Model Higgs Boson with the ATLAS

experiment at the LHC using the WH → `νbb̄ production and decay mode.

The studies of the L1Calo bunch crossing identification efficiency, using data recorded

during the LHC 2010 Heavy Ion run, were shown in Chapter 6. All partitions of

the ATLAS calorimeters were shown to reach near full efficiency (plateaued above

98%) for calorimeter deposits above ET = 3 GeV. The efficiency was also measured

for individual L1Calo pulse heights. Some L1Calo trigger towers were found to have

significantly worse performance than others in the same partition. These towers

were found to have misformed pulse shapes, the cause of which was determined to

be cross talk from the MBTS trigger signal. This study contributed to the decision

to disable the MBTS signals.

155
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Chapter 7 described the Emiss
T triggered WH → µνbb̄ analyses. Two analyses, which

share a large degree of similarity, were described: the cut-based analysis and the

more complex MVA analysis, which uses a BDT to separate the signal and back-

ground. Both analyses use the 2012 LHC data recorded at a centre-of-mass energy

of
√
s = 8 TeV. Events selected by the analyses were split into separate regions

based on the reconstructed pT(W ) in each event and the b-tagging operating points

passed by both jets to produce regions with improved S/B while also maintaining

signal efficiency.

The fit model used to extract results from the Emiss
T triggered and Combined cut-

based and MVA analyses was described in Chapter 8, including the regions and

systematics used in the likelihood-based fit. The pulls of the different contributions

to the systematic uncertainty were shown for the Emiss
T triggered analyses and nui-

sance parameter ranking was shown for the Emiss
T triggered and Combined analyses.

The W boson plus heavy flavour jets based nuisance parameters, particularly the

normalisations, were generally those ranked as having the largest effect on the fitted

value of the WH → `νbb̄ signal strength, µ̂.

The same fit model was used in Chapter 9 to investigate the correlation between

the three V H analysis channels (ZH → ννbb̄,WH → `νbb̄ and ZH → ``bb̄) with

some additions to the model for correlations/decorrelations. Pairs of statistically

linked pseudo-datasets were created for the different cut-based and MVA analyses

by the V H analysis groups using the modified bootstrap method. The correlation

was calculated for the signal strength, µ̂, as well as for nuisance parameters of the

fit. A high degree of correlation is observed for each of the V H channels, the highest

being for ZH → ννbb̄, as well as in the full V H fits.

The results for the Emiss
T triggered and Combined cut-based and MVA analyses are

shown in Chapter 10. Limits on the WH → `νbb̄ signal strength were calculated
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as a function of Higgs mass, along with the p0 value, signal strength (µ̂) and signal

significance for all analyses. The Emiss
T triggered analyses had only weak background

constraints and a smaller signal expectation than the Nominal analyses. The overall

observed (expected) limit is 6.281 (4.788) in the cut-based Emiss
T triggered analysis

and 4.303 (4.414) in the MVA analysis.

The main purpose of the Emiss
T triggered analyses was not to extract results exclu-

sively but to improve the signal statistics and sensitivity of the Nominal analyses.

The sensitivity of the Combined cut-based analysis is 5.1% higher than the Nom-

inal due to the addition of the Emiss
T triggered events. The increase in sensitivity

is 6.2% in the MVA analysis, higher than for the cut-based analysis. The Com-

bined MVA analysis is the most sensitive of the analyses presented, giving a 17.2%

better expected limit and an 18.5% higher expected significance than the cut-based

analysis. The MVA observed (expected) limit is 2.507 (1.369) and the observed

(expected) significance is 1.905 (1.534). The final value of the signal strength for

the WH → `νbb̄ analysis is µ̂ = 1.231+0.733
−0.665. The consistency with the less sensitive

cut-based result of 2.316+0.986
−0.886 is estimated to be 5.6%, assuming that the study of

the Nominal WH → `νbb̄ analysis found in Chapter 9 holds true for the Combined.

The WH → `νbb̄ analyses do not yet have sensitivity at the Standard Model level,

whilst the full V H,H → bb̄ analyses in ATLAS and CMS can currently make no

conclusive statement of this mode. The V H channels are a very important test

of the Standard Model Higgs Boson, which has been observed in other channels

and should therefore by a high priority for the LHC Run II. All V H channels,

including the recovery of events using Emiss
T triggers, will be important in studying

the V H,H → bb̄ mode [116].
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C. Schumacher, R. Schwienhorst, S. B. Silverstein, E. Simioni, G. Snidero,
R. J. Staley, R. Stamen, P. Stock, M. C. Stockton, C. L. A. Tan,
S. Tapprogge, J. P. Thomas, P. D. Thompson, M. Thomson, P. True, P. M.
Watkins, A. T. Watson, M. F. Watson, P. Weber, M. Wessels,
C. Wiglesworth, and S. L. Williams, The ATLAS Level-1 Calorimeter
Trigger: PreProcessor implementation and performance, JINST 7 .

[72] S. Agostinelli et al., GEANT4: A Simulation toolkit , Nucl.Instrum.Meth.
A506 (2003) 250–303 SLAC-PUB-9350, FERMILAB-PUB-03-339.

[73] A. Rimoldi and A. Dell’Acqua, The Full detector simulation for the ATLAS
experiment: Status and outlook , eConf C0303241 (2003)
CHEP-2003-TUMT001.

[74] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J
C70 (2010) 823.

[75] E. Richter-Was, D. Froidevaux, and L. Poggioli, ATLFAST 2.0 a fast
simulation package for ATLAS , Tech. Rep. ATL-PHYS-98-131, CERN,
Geneva, Nov, 1998.

[76] T. Sjostrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to PYTHIA
8.1 , Comput.Phys.Commun. 178 (2008) CERN-LCGAPP-2007-04,
LU-TP-07-28, FERMILAB-PUB-07-512-CD-T.

[77] Summary of ATLAS Pythia 8 tunes , Tech. Rep. ATL-PHYS-PUB-2012-003,
CERN, Geneva, Aug, 2012.

[78] A. Sherstnev and R. Thorne, Parton Distributions for LO Generators , Eur.
Phys. J. C55 (2008) 553–575.



164 REFERENCES

[79] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al., New
generation of parton distributions with uncertainties from global QCD
analysis , JHEP 0207 (2002) 012.

[80] P. Golonka and Z. Was, PHOTOS Monte Carlo: A Precision tool for QED
corrections in Z and W decays , Eur.Phys.J. C45 (2006) 97–107.

[81] Z. Was, TAUOLA the library for tau lepton decay , Nucl.Phys.Proc.Suppl. 98
(2001) 96–102.

[82] A. Djouadi, J. Kalinowski, and M. Spira, HDECAY: A program for Higgs
boson decays in the Standard Model and its supersymmetric extension,
Comput. Phys. Commun. 108 (1998) 56–74, arXiv:hep-ph/9704448
[hep-ph].

[83] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti,
G. Passarino, and R. Tanaka (Eds.), Handbook of LHC Higgs Cross Sections:
2. Differential Distributions , CERN-2012-002 (2012) .

[84] T. Gleisberg et al., Event generation with SHERPA 1.1 , JHEP 02 (2009)
007.

[85] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et al., New parton
distributions for collider physics , Phys.Rev. D82 (2010) .

[86] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for
implementing NLO calculations in shower Monte Carlo programs: the
POWHEG BOX , JHEP 06 (2010) 043.

[87] ATLAS Collaboration, New ATLAS event generator tunes to 2010 data,
ATL-PHYS-PUB-2011-008.

[88] B. P. Kersevan and E. Richter-Was, The Monte Carlo event generator
AcerMC version 2.0 with interfaces to PYTHIA 6.2 and HERWIG 6.5 ,
TPJU-6-2004.

[89] ATLAS Collaboration, Measurement of the muon reconstruction performance
of the ATLAS detector using 2011 and 2012 LHC proton-proton collision
data, CERN-PH-EP-2014-151, arXiv:1407.3935 [hep-ex].

[90] ATLAS Collaboration, Electron efficiency measurements with the ATLAS
detector using the 2012 LHC proton-proton collision data,
ATLAS-CONF-2014-032.

[91] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm,
JHEP 04 (2008) 063.

[92] W. Lampl et al., Calorimeter clustering algorithms: Description and
performance, ATL-LARG-PUB-2008-002.

http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/hep-ph/9704448
http://arxiv.org/abs/1407.3935


165 REFERENCES

[93] ATLAS Collaboration, A measurement of single hadron response using data
at
√
s = 8 TeV with the ATLAS detector , Tech. Rep.

ATL-PHYS-PUB-2014-002, CERN, Geneva, Mar, 2014.

[94] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas , Phys. Lett.
B 659 (2008) 119–126.

[95] ATLAS Collaboration, Tagging and suppression of pileup jets with the
ATLAS detector , Tech. Rep. ATLAS-CONF-2014-018, CERN, Geneva, May,
2014.

[96] ATLAS Collaboration, Performance of Missing Transverse Momentum
Reconstruction in ATLAS studied in Proton-Proton Collisions recorded in
2012 at 8 TeV , Tech. Rep. ATLAS-CONF-2013-082, CERN, Geneva, Aug,
2013.

[97] A. Buzatu et al., Invariant Mass Studies for the H → bb̄ Measurements for
HCP , Tech. Rep. ATL-COM-PHYS-2012-1451, CERN, Geneva, 2012.

[98] ATLAS Collaboration, Calibration of the performance of b-tagging for c and
light-flavour jets in the 2012 ATLAS data, Tech. Rep.
ATLAS-CONF-2014-046, CERN, Geneva, Jul, 2014.

[99] ATLAS Collaboration, Calibration of b-tagging using dileptonic top pair
events in a combinatorial likelihood approach with the ATLAS experiment ,
Tech. Rep. ATLAS-CONF-2014-004, CERN, Geneva, Feb, 2014.

[100] P. Berta, F. Filthaut, V. Dao, E. Le Menedeu, F. Parodi, G. Piacquadio,
T. Scanlon, M. Ughetto, and L. Zhang, Continuous b-tagging for the ATLAS
experiment , Tech. Rep. ATL-COM-PHYS-2014-035, CERN, Geneva, Jan,
2014.

[101] B. P. Roe, H.-J. Yang, and J. Zhu, Boosted Decision Trees, A Powerful
Event Classifier , in Proceedings of PHYSTAT05: Statistical Problems in
Particle Physics, Astrophysics and Cosmology. 2005. http://www.physics.
ox.ac.uk/phystat05/proceedings/files/phystat05-proc.pdf.

[102] A. Hocker, J. Stelzer, F. Tegenfeldt, H. Voss, K. Voss, et al., TMVA - Toolkit
for Multivariate Data Analysis , PoS ACAT (2007) 040.

[103] A. Read, Modified frequentist analysis of search results (the CLS method),
Tech. Rep. CERN-OPEN-2000-205, 2000.

[104] L. Moneta et al., The RooStats Project , in Proceedings of the 13th
International Workshop on Advanced Computing and Analysis Techniques in
Physics Research, ACAT2010.

[105] W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling , in 2003
Computing in High Energy and Nuclear Physics, CHEP03. 2003.

http://www.physics.ox.ac.uk/phystat05/proceedings/files/phystat05-proc.pdf
http://www.physics.ox.ac.uk/phystat05/proceedings/files/phystat05-proc.pdf


166 REFERENCES

[106] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for
likelihood-based tests of new physics , Eur. Phys. J. C 71 (2011) 1554.

[107] ATLAS Collaboration, Preliminary results on the muon reconstruction
efficiency, momentum resolution, and momentum scale in ATLAS 2012 pp
collision data, Tech. Rep. ATLAS-CONF-2013-088, CERN, Geneva, Aug,
2013.

[108] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in
proton-proton collisions at

√
s = 7 TeV , Eur.Phys.J. C73 (2013) 2304

CERN-PH-EP-2011-191.

[109] ATLAS Collaboration, Jet energy resolution in proton-proton collisions at√
s = 7 TeV recorded in 2010 with the ATLAS detector , Eur. Phys. J. C 73

(2013) 2306 CERN-PH-EP-2012-191.

[110] ATLAS Collaboration, Measurements of normalized differential
cross-sections for ttbar production in pp collisions at sqrt(s) = 7 TeV using
the ATLAS detector , Phys. Rev. D (2014) .

[111] N. Kidonakis, Differential and total cross sections for top pair and single top
production, Tech. Rep. DESY-PROC-2012-02/251.

[112] L. Demortier, Interval Estimation, in: Data Analysis in High Energy
Physics. Wiley-VCH, 2013.

[113] G. Bohm and G. Zech, Introduction to statistics and data analysis for
physicists. Verl. Dt. Elektronen-Synchrotron, Hamburg, 2010.

[114] B. Efron, Bootstrap methods: another look at the jacknife, The Annals of
Statistics 2 (1979) 1–26.

[115] ATLAS Higgs Group HSG5. Private communication.

[116] ATLAS Collaboration, Prospects for the study of the Higgs boson in the
VH(bb) channel at HL-LHC , Tech. Rep. ATL-PHYS-PUB-2014-011, CERN,
Geneva, 2014.



Appendices

167



APPENDIX A

Ratio of Emiss
T Triggered Yields to Muon Triggered Yields

The yield of events recovered by using the Emiss
T triggers exclusively as a fraction of

the yield passing the muon triggers is shown in Figure A.1 for the 2-jet cut-based
analysis, Figure A.2 for the 3-jet cut-based, Figure A.3 for the 2-jet and 3-jet merged
cut-based and Figure A.4 for the MVA analyses. Each of these is separated into dif-
ferent pT(W ) ranges as well as shown inclusively. The plots were produced in the
same way as described in Section 7.6.
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Figure A.1: Ratio of exclusive Emiss
T triggered to muon triggered signal yields in

the different cut-based 2-jet, 2-tag signal regions as a function of Higgs mass, mH .
The yields are all prefit Monte Carlo expectations. The different b-tagging regions
(LL,MM,TT) are merged as no significant difference is observed between these re-
gions. The error on each point contains only statistical and trigger uncertainties.
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Figure A.2: Ratio of exclusive Emiss
T triggered to muon triggered signal yields in

the different cut-based 3-jet, 2-tag signal regions as a function of Higgs mass, mH .
The yields are all prefit Monte Carlo expectations. The different b-tagging regions
(LL,MM,TT) are merged as no significant difference was observed between these
regions. The error on each point contains only statistical and trigger uncertainties.
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(a) 2-jet & 3-jet pT(W ) = 120− 160 GeV
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Figure A.3: Ratio of exclusive Emiss
T triggered to muon triggered signal yields in

the different cut-based 2-jet and 3-jet merged 2-tag signal regions as a function of
Higgs mass, mH . The yields are all prefit Monte Carlo expectations. The different
b-tagging regions (LL,MM,TT) are merged as no significant difference is observed
between these regions. The error on each point contains only statistical and trigger
uncertainties.
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Figure A.4: Ratio of exclusive Emiss
T triggered to muon triggered signal yields in the

different MVA 2-tag signal regions as a function of Higgs mass, mH . The yields are
all prefit Monte Carlo expectations. The different b-tagging regions (LL,MM,TT)
are merged as no significant difference is observed between these regions. The error
on each point contains only statistical and trigger uncertainties.



APPENDIX B

Nominal WH → `νbb̄ Nuisance Parameter Ranking

The ranking for the top 15 nuisance parameters in the Nominal analyses can be found
in Figure B.1. The method used to obtain the ranking was previously explained in
Chapter 8. The highest ranked nuisance parameters for the cut-based analysis is the
W+2 b-jets/W+2 c-jets di-jet invariant mass shape for pT(W ) > 120 GeV (VMbb)
and for the MVA analysis it is normalisation ratio of W+b-jet+light-jet and W+2
b-jets (WblWbbRatio).
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Figure B.1: Ranking of systematics and normalisations based upon their impact on
the fitted µ̂ value for the Nominal cut-based and MVA analyses. The 15 highest
ranking nuisance parameters are shown in each case. The bottom x axis and points
show the relative shift of postfit values of the nuisance parameters, (θ̂−θ0)/∆θ, in terms
of the postfit value, θ̂, prefit value, θ0, and prefit 1σ uncertainty on the nuisance
parameter, ∆θ. The error bars on the points indicate the postfit uncertainty in
terms of the relative shift. The top x axis and boxes show the shift in the fitted µ̂
value when the nuisance parameter is fixed to its postfit value shifted up and down
by the corresponding uncertainty. The shaded part of the box corresponds to θ̂+∆θ
while the unshaded corresponds to θ̂ −∆θ.



APPENDIX C

WH → `νbb̄ Nominal Results

The Nominal dataset, if fitted in the same way as the Emiss
T triggered dataset, for

the same range of hypothesised Higgs masses as described in Section 10.2. The set
of results shown in Chapter 10 for the Emiss

T triggered and Combined analyses is
also produced for the Nominal cut-based and MVA analyses. The description of
the methods used to produce the results, the categories in tables and the contents
of figures are the same as in Section 10.2. The limits, as a function of mH , on the
cross section times branching ratio are shown in Table C.1 and Figure C.1a for the
cut-based analysis and Table C.2 and Figure C.1b for the MVA analysis. The local
p0, as a function of mH , is shown for the cut-based and MVA analyses in Table C.3
and Figure C.2. All bins from all fit regions in the cut-based and MVA analyses are
combined (separately for the cut-based and MVA) based on the value of log10(S/B) in
each bin in Figure C.3. Table C.4 contains a summary of the results obtained for the
cut-based and MVA analyses at a hypothesised Higgs mass, mH = 125 GeV. The
observed µ̂ value for the cut-based analysis is µ̂Cut = 2.568+0.710

−0.686(stat.)+0.758
−0.630(syst.)

and for the MVA analysis is µ̂MVA = 1.125+0.578
−0.552(stat.)+0.548

−0.469(syst.). The observed
(expected) significance in the Cut-based analysis is 2.931 (1.237) and in the MVA
analysis is 1.584 (1.426).
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mH (GeV) Exp. +2σ +1σ −1σ −2σ Obs.
100 0.87 1.63 1.22 0.63 0.47 1.25
110 1.04 1.95 1.45 0.75 0.56 1.93
115 1.14 2.13 1.59 0.82 0.61 2.32
120 1.38 2.57 1.91 0.99 0.74 3.09
125 1.74 3.25 2.43 1.26 0.94 4.35
130 2.14 3.99 2.98 1.54 1.15 5.02
135 2.77 5.16 3.85 1.99 1.48 5.11
140 3.86 7.21 5.38 2.78 2.07 6.74

Table C.1: Expected and observed limits from the 95% CL upper bound on the
cross section times branching ratio as a function of mH for the Nominal Cut-based
analysis. Values are expressed as a multiple of the standard model expectation. The
±1σ and ±2σ shifts from the expected are also shown

mH (GeV) Exp. +2σ +1σ −1σ −2σ Obs.
100 1.59 2.96 2.21 1.14 0.85 2.97
110 1.34 2.51 1.87 0.97 0.72 2.05
115 1.11 2.07 1.55 0.80 0.60 2.09
120 1.20 2.23 1.66 0.86 0.64 1.83
125 1.43 2.71 2.02 1.05 0.78 2.52
130 1.93 3.61 2.69 1.39 1.04 3.12
135 2.97 5.55 4.14 2.14 1.60 5.67
140 5.47 10.20 7.61 3.94 2.94 9.88

Table C.2: Expected and observed limits from the 95% CL upper bound on the cross
section times branching ratio as a function of mH for the Nominal MVA analysis.
Values are expressed as a multiple of the standard model expectation. The ±1σ and
±2σ shifts from the expected are also shown

mH (GeV) Exp p0 Obs p0

100 0.01139 0.13452
110 0.02467 0.05695
115 0.03513 0.02922
120 0.06337 0.01273
125 0.10812 0.00169
130 0.15639 0.00275
135 0.21983 0.03346
140 0.28877 0.07505

(a) Cut-based

mH (GeV) Exp p0 Obs p0

100 0.09914 0.0309
110 0.06618 0.11257
115 0.03086 0.02893
120 0.04258 0.09936
125 0.07549 0.05386
130 0.13731 0.07561
135 0.23431 0.02897
140 0.35017 0.05085

(b) MVA

Table C.3: Expected and observed local p0 values as a function of mH for the
Nominal Cut-based and MVA analyses.
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Figure C.1: Expected and observed limits from the 95% CL upper bound on the
cross section times branching ratio as a function of mH for the nominal analyses.
Values are expressed as a multiple of the standard model expectation. The observed
is shown as a solid line while the expected, for the background only case, is shown
as a dashed line with the green and yellow shaded areas representing the ±1σ and
±2σ shifts from the expected.
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Figure C.2: Expected and observed local p0 values as a function of mH for the
nominal analyses. The observed is shown as a solid line while the expected, for a
standard model Higgs Boson, is shown as a blue dashed line. The horizontal dashed
lines convert the p0 values to significance values.
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Figure C.3: Yields ordered by log10(S/B) for the nominal Cut-based and MVA anal-
yses. Bins from all signal regions are combined into bins based on the calculated
log10(S/B) from the postfit background event yields and the expected signal yield.
The lower part of the plots show the statistical pull of the data as points along with
the expected pull from the standard model expectation as a red line.

Cut-based MVA
Stat-Only Expected Limit 1.258 1.088

Systematics Expected Limit 1.743 1.459
Systematics Observed Limit 4.354 2.521

Expected Significance 1.237 1.426
Observed Significance 2.931 1.584

µ̂ 2.568+1.038
−0.932 1.125+0.797

−0.724

Table C.4: Summary of the main Nominal Cut-based and MVA fit results



APPENDIX D

Postfit Combined WH → `νbb̄ Regions

The postfit distributions of regions used in the Combined cut-based analysis are
shown in Figures D.1 to D.11 and for the MVA analysis in Figures D.12 to D.16.
The plots follow the same structure as described for the Emiss

T triggered analyses
in Section 10.1. These plots contain the same events as the Nominal for pT(W ) <
120 GeV while for pT(W ) > 120 GeV the plots contain both the events from the
Nominal and the additional 20 − 35% (see Section 7.6) of events from the Emiss

T

triggered analyses that were previously shown in Section 10.1. The pull of the
events from the Emiss

T triggered and Nominal analyses on each other causes the
normalisations in each region to be different from both the individual cases. The
data is generally well described by the postfit MC expectations. Good data-MC

agreement is found. The agreement is comparable to that of the Nominal analyses
(as shown in Appendix C) when considering the smaller statistical fluctuations due
to the increase in statistics coming from the additional Emiss

T triggered events.
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Figure D.1: Postfit distributions of dijet invariant mass, mbb, in the cut-based combined
2-jet pT(W ) = 0 − 90 GeV regions, split into b-tagging categories. The data is shown as
points with error bars and the postfit Monte Carlo background yield is shown as stacked
histograms. The uncertainty on the total background yield is represented as a shaded area
and the prefit total background yield is shown as a blue dashed line. The expected Higgs
signal, from a sample at mH = 125 GeV, is shown both stacked on top of the background
histograms at the standard model expectation and unstacked but scaled by the factor
stated in the legend. The lower part of each plot shows the ratio of the data yield to the
postfit background and signal prediction.
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Figure D.2: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
2-jet pT(W ) = 90− 120 GeV regions. The format is the same as Figure D.1.
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Figure D.3: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
2-jet pT(W ) = 120− 160 GeV regions. The format is the same as Figure D.1.
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Figure D.4: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
2-jet pT(W ) = 160− 200 GeV regions. The format is the same as Figure D.1.
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Figure D.5: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
2-jet pT(W ) > 200 GeV regions. The format is the same as Figure D.1.
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Figure D.6: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
3-jet pT(W ) = 0− 90 GeV regions. The format is the same as Figure D.1.
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Figure D.7: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
3-jet pT(W ) = 90− 120 GeV regions. The format is the same as Figure D.1.
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Figure D.8: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
3-jet pT(W ) = 120− 160 GeV regions. The format is the same as Figure D.1.
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Figure D.9: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
3-jet pT(W ) = 160− 200 GeV regions. The format is the same as Figure D.1.
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Figure D.10: Positfit distributions of dijet invariant mass, mbb, in the cut-based combined
3-jet pT(W ) > 200 GeV regions, split into b-tagging categories. The format is the same
as Figure D.1.
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Figure D.11: Postfit distributions of the b-tagging weight, MV 1c, in the cut-based com-
bined 1-tag 2-jet and 3-jet pT(W ) < 120 GeV and pT(W ) > 120 GeV regions. The format
is the same as Figure D.1.
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Figure D.12: Postfit distributions of the BDT output in the MVA combined 2-jet
pT(W ) < 120 GeV regions. The format is the same as Figure D.1.
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Figure D.13: Postfit distributions of the BDT output in the MVA combined 2-jet
pT(W ) > 120 GeV regions. The format is the same as Figure D.1.
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Figure D.14: Postfit distributions of the BDT output in the MVA combined 3-jet
pT(W ) < 120 GeV regions. The format is the same as Figure D.1.
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Figure D.15: Postfit distributions of the BDT output in the MVA combined 3-jet
pT(W ) > 120 GeV regions. The format is the same as Figure D.1.



186 APPENDIX D. POSTFIT COMBINED WH → `νBB̄ REGIONS

E
v
e

n
ts

20

40

60

80

100

120

140

160

180

200

220

3
10×

Data 2012
=1.0)µVH(bb) (

tt
Single top
Multijet
W+hf
W+cl
W+l
Z+l
Uncertainty
Pre­fit background

2096×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 1 tag

<120 GeVV

T
p

MV1c(b)

80 70 60 50D
a

ta
/P

re
d

0.99

1

1.01

(a) 2 Jet
pT(W ) < 120 GeV

E
v
e

n
ts

10

20

30

40

50

60

70

80

90

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+l
Uncertainty
Pre­fit background

1002×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 2 jets, 1 tag

>120 GeVV

T
p

MV1c(b)

80 70 60 50D
a

ta
/P

re
d

0.98
0.99

1
1.01
1.02

(b) 2 Jet
pT(W ) > 120 GeV

E
v
e

n
ts

0

10

20

30

40

50

60

70

80

90

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+hf
Z+l
Uncertainty
Pre­fit background

2548×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 3 jets, 1 tag

<120 GeVV

T
p

MV1c(b)

80 70 60 50D
a

ta
/P

re
d

0.98
0.99

1
1.01
1.02

(c) 3 Jet
pT(W ) < 120 GeV

E
v
e

n
ts

5

10

15

20

25

30

35

40

45

3
10×

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
W+cl
W+l
Z+l
Uncertainty
Pre­fit background

1263×VH(bb)

 
­1

Ldt = 20.3 fb∫ = 8 TeV s

1 lep., 3 jets, 1 tag

>120 GeVV

T
p

MV1c(b)

80 70 60 50D
a

ta
/P

re
d

0.98

1

1.02

(d) 3 Jet
pT(W ) > 120 GeV

Figure D.16: Postfit distributions of the b-tagging weight, MV 1c, in the MVA combined
1-tag 2-jet and 3-jet pT(W ) < 120 GeV and pT(W ) > 120 GeV regions. The format is the
same as Figure D.1.



APPENDIX E

Correlation of Additional Nuisance Parameters

Additional correlation plots are shown here for nuisance parameters in the individual
lepton and combined fits. The plots are produced in the same way as the correlation
plots shown in Chapter 9. Shown here are the correlations of the individual channel
tt̄ normalisation in Figure E.1, combined fit tt̄ normalisation in Figure E.2, Wbb̄
normalisation in Figure E.3, Zbb̄ normalisation in Figure E.4, scaling of soft terms
in the Emiss

T calculation in Figure E.5 (this was found to be a troublesome parameter
in the normal analysis fits due to the nature of the ATLAS Emiss

T calibration), and
the 2 leading jet energy scale nuisance parameters in Figures E.6 and E.7.
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Figure E.1: Correlation of tt̄ normalisation from the individual lepton cut-based and
MVA bootstrap pseudo-datasets. Shown for 800 pairs of replicas in each channel.
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Figure E.2: Correlation of tt̄ normalisation in individual lepton channels in the
Combined cut-based and MVA bootstrap pseudo-datasets. Shown for 700 sets of
pairs of replicas.
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Figure E.3: Correlation of Wbb̄ normalisation from the 1 Lepton and Combined
cut-based and MVA bootstrap pseudo-datasets. Shown for 800 pairs of replicas in
the 1 lepton channel and 700 sets of pairs of replicas in the Combined.
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Figure E.4: Correlation of Wbb̄ normalisation from the 0 & 2 lepton and Combined
cut-based and MVA bootstrap pseudo-datasets. Shown for 800 pairs of replicas in
the 0 & 2 lepton channel and 700 sets of pairs of replicas in the Combined.
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Figure E.5: Correlation of the scaling of soft terms in the Emiss
T calulation from the

individual lepton and Combined cut-based and MVA bootstrap pseudo-datasets.
Shown for 800 pairs of replicas in each individual lepton channel and 700 pairs for
the Combined analysis.
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Figure E.6: Correlation of the leading jet energy scale nuisance parameter from the
individual lepton and Combined cut-based and MVA bootstrap pseudo-datasets.
Shown for 800 pairs of replicas in each individual lepton channel and 700 pairs for
the Combined analysis.
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Figure E.7: Correlation of the 2nd leading jet energy scale nuisance parameter from
the individual lepton and Combined cut-based and MVA bootstrap pseudo-datasets.
Shown for 800 pairs of replicas in each individual Lepton channel and 700 pairs for
the Combined analysis.


	Introduction
	The Higgs Boson
	The Standard Model
	The Higgs Mechanism
	Production and Decay at the LHC
	Experimental Status

	The Large Hadron Collider
	The ATLAS Experiment
	Inner detector
	Calorimetry
	Muon Spectrometer
	Magnet System
	Trigger
	Luminosity

	Level 1 Calorimeter Trigger
	Pre-Processor Module
	Bunch Crossing Identification
	Cluster Processor and Jet/Energy Processor Modules

	Bunch Crossing Identification
	Methodology
	Results
	BCID On-Off Curves
	Methodology
	Results

	Understanding Badly Performing Towers
	Differences Between Towers

	Summary

	Search For A Higgs Boson Decaying To A b-Quark Pair
	Introduction
	Data & Monte Carlo Samples
	Object Selection
	Event Selection
	b-jet Tagging
	Triggering Strategy and Impact on Event Yields
	Multivariate Analysis
	Prefit ETmiss triggered Regions
	Summary

	Statistical Fit Model
	Glossary of Terms
	Fit Regions and Binning
	Systematics
	Nuisance Parameter Pulls & Ranking
	Summary

	Correlation of the VH,Hb Cut-based and MVA analyses
	Introduction
	Bootstrapping
	Methodology
	Results
	Consistency of the Cut-based and MVA Results

	Results For The Search For WHb
	Postfit ETmiss Triggered WHb Regions
	ETmiss Triggered WHb Results
	Combined WHb Results
	Discussion of Results
	Expected Results
	Observed Results

	Comparison of Results
	Position within ATLAS VH
	Comparison to CMS VH

	Conclusion

	Summary and Conclusions
	Ratio of ETmiss Triggered Yields to Muon Triggered Yields
	Nominal WHb Nuisance Parameter Ranking
	WHb Nominal Results
	Postfit Combined WHb Regions
	Correlation of Additional Nuisance Parameters



