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Abstract

This thesis presents a study of spin correlation in tt̄ production in the ATLAS
detector, in proton-proton collisions, corresponding to an integrated luminosity of
4.7fb−1, with a centre of mass energy of

√
s = 7 TeV. Both the dilepton and single

lepton channels are considered, the latter providing a greater challenge due to the
neccessity to reconstruct the down-type quark resulting from the W boson decay.

A simple technique is employed to reconstruct single lepton tt̄ events, with the
transverse angle between the charged lepton and down-type quark used as a probe
of the spin correlation. In the dilepton channel, the transverse angle between both
charged leptons is used.

The extracted value of spin correlation in each channel is consistent with Standard
Model predictions, with the result in the eµ channel alone sufficient to exclude a
model without spin correlation at 7.8σ.
Also described is the author’s contribution to the maintenance and development of
the Atlantis Event Display.
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Chapter 1
Non-Technical Overview

1.1 Introduction

Particle physics is often called High Energy Physics, or Elementary Particle Physics.

The former term is descriptive of the means of study, while the latter is descriptive of

the motive; high energy beams of particles are used in order to study the elementary

constituents of matter.

The idea that matter is composed of elementary ‘building blocks’ can be traced back

at least as far as Ancient Greece, where the philosophers proposed that all matter

can be split into indivisible components, or atoms. It is only in the last century or

so that experiment has been able to study the constituents of matter. The discovery

of the electron in the late 1800’s spurred many advances in the field of particle

physics, and since then, particle after particle has been discovered and added to a

still growing list.

Early particle physics experiments used cosmic rays as the source of high energy

particles, while developments in accelerating charged particles in an electric field [1]

allowed for collisions between beams of particles and stationary targets and later,
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collisions of beams of particles from both linear and circular accelerators. As the

energy of the beams used in collider experiments increases, the effective resolving

power of the experiment improves. Assuming the particles in the beam are point-

like (e.g. electrons), the resolving power can be approximated by the de Broglie

wavelength of the particle,

λ =
h

p
, (1.1)

where h is Planck’s constant and p the momentum of the particle. Thus, higher

energy experiments can probe smaller distances. This is useful, for example, in

probing the structure of the proton, revealing its nature as a composite particle

(composed of triplets of quarks).

Using the energy mass equivalence,

E = mc2, (1.2)

entirely new particles can be created. For example, if an electron annihilates with

a positron with at least 91 GeV centre of mass energy, a Z boson may be created.

1.1.1 Units in Particle Physics

In particle physics, typical energies expressed in SI units tend to be of the order

10−10 Joules, and masses around 10−27 kg. This makes using SI units to describe

physics on such small scales quite cumbersome. Instead, units based on the amount

of energy gained by an electron moving across a potential of 1 V (1 electronVolt

≈ 1.6 × 10−19 J) are used. An additional convenience is to absorb some frequently

used constants c and ~, into the units themselves, effectively setting c = 1 and ~ = 1.

For example, the mass-energy of a proton would be expressed as

E = mc2 = (1.67× 10−27)(3× 108)2/(1.6× 10−19)eV = 0.939 GeV (1.3)
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and the proton mass can thus be written

m = E/c2 = 0.939 GeV/c2 (1.4)

Similarly, momentum can be expressed the units of GeV/c.

1.2 The Standard Model

1.2.1 Fermions

The myriad of particles discovered and studied since the discovery of the electron [2]

have mostly been determined to be composite particles. Just as a helium atom can

be split into two protons, two neutrons and two electrons, in the simplest view, a

proton comprises two up quarks and a down quark, bound together by the gluons

of the strong force. A composite particle formed of three quarks like this is called a

baryon. Similarly, there can exist particles consisting of a quark and an anti-quark,

such as a pion. These particles are known as mesons. Both baryons and mesons are

made up of quarks and can be further grouped into hadrons. All hadrons are formed

of quarks, but not all quarks share the same properties. Up quarks have electric

charge +2
3

while down quarks have electric charge −1
3
, in units of the electron charge.

A proton, made of two up quarks and a down quark, then has total charge +1, and

a neutron, made of two down quarks and an up quark, has charge 0.

While many baryons have been discovered, they are not all made of the same two

quark types, or flavours. In order to describe the intrinsic properties of the so

called particle zoo, additional flavours were introduced to the quark model [3]. In

fact, there have been discovered three ‘generations’ of quarks [4], each generation

having a positively and negatively charged member. The first generation contains

the familiar up (u) and down (d) quarks. The second generation contains charm
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Family Particle Charge

lepton e µ τ −1

νe νµ ντ 0

quark u c t +2
3

d s b −1
3

Table 1.1: The fermion sector of the Standard Model.

(c) and strange (s) quarks, carrying the same respective charges but with different

quantum numbers, as well as higher masses. Finally there is a third generation

of quarks, the top (t) and bottom (b) quarks, which again have the same respective

charges but still higher masses. In fact, the top quark is the most massive elementary

particle yet to be discovered.

Returning to the Helium atom, in addition to quarks making up the protons and

neutrons in the nucleus, the Helium atom also contains two electrons. Similar to the

generations of quarks, there have been discovered ‘heavier electrons’. The muon is

similar to the electron but with a larger mass, and the tau is more massive than the

muon. Each of these particles has a charge of −1 and a corresponding electrically

chargeless partner, called a neutrino. These six particles form a group called leptons,

and along with the quarks, are members of a larger group called fermions (see table

1.1).

All particles possess another quantum property called spin. Spin is a form of angular

momentum, though unlike angular momentum in classical physics, spin is quantised,

i.e. it takes on only discrete values. Fermions can be classified as elementary particles

which carry spin 1
2

(in units of ~). The spin can take on two possible orientations,

+1
2

or −1
2
, commonly called spin-up and spin-down. Composite particles with half-

integer spin other than 1
2

(such as 3
2
), would also be described as fermions, though

all known elementary fermions carry spin 1
2
.

The fermions are responsible for making up ‘everyday matter’; particles such as
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protons, neutrons and electrons are fermions which form the atoms that make up

elements and the Periodic Table. There are also particles which possess integer spin,

known as bosons. Integer spin particles may be composite; made up of two quarks

whose spin is arranged such that the sum is an integer (Mesons).

1.2.2 Bosons

Particle physics is concerned also with the interactions between particles. These

interactions are mediated by ‘force carrying’ particles. These particles are all fun-

damental bosons. There are four fundamental interactions (see table 1.2), or forces,

which may occur between particles:

• Electromagnetic - The electromagnetic force is responsible for most phenomena

occurring on scales larger than the size of the atomic nucleus such as: the

binding of an electron in orbit around a nucleus and atoms in molecules; the

energy released when these bonds are broken (i.e. chemistry); magnetism and

electricity; cohesion in liquids leading to the surface tension of water; and

even light is a phenomena explained by the electromagnetic interaction. The

electromagnetic force is carried by the photon and acts only on electrically

charged particles.

• Weak - The weak force is responsible for the process of β decay, the conversion

of a neutron to a proton via emission of an electron and a neutrino (see figure

1.1), as well as other more exotic processes, such as the decay of the top quark.

The weak force is experienced by all particles, and is mediated by three massive

bosons, the W± and the Z0. Mathematically, the Weak and Electromagnetic

force are described by the same underlying theory, called Electroweak [5]. This

implies that at high energy scales, the two separate forces become unified. This

unification has led to many theories attempting to unify all of the Standard

Model forces. Such a theory is called a Grand Unified Theory [6].
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Figure 1.1: A Feynman Diagram showing the process of β decay. One of the down quarks
in the incoming neutron emits a W− boson, turning it into an up quark. The W− boson
then decays to an electron and anti-neutrino pair.

• Strong - The strong force is, as the name suggests, the strongest of the four

forces. The strong force interacts with particles carrying the ‘charge’ of the

strong force, colour (ie. quarks and gluons). The interactions of the strong

force are governed by Quantum Chromodynamics (QCD). Theoretically, due

to the mediator of the strong force, the gluon, being massless, the strong force

should have an infinite range. Gluons themselves carry colour charge and as

such are self interacting, so can only have a short range before interacting.

This makes the strong force one of the shortest range forces. The strong force

is responsible for binding the quarks together inside protons and neutrons (and

other hadrons).

• Gravity - Gravity is probably the most familiar force, yet it is the only force

not described in the Standard Model. There are theories which propose a

mediator particle, the graviton, though none of these theories are supported

with experimental evidence. However, experiments to search for gravitational

waves are in progress [7,8], which may yet shed light on possible properties of

the graviton.

All of the bosons associated with the fundamental forces (with the exception of

gravity) carry a spin of 1. The Standard Model Higgs boson is the only known
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Force Boson Electric Charge

Electromagnetic γ (photon) 0
Strong g (gluon) 0
Weak W±, Z0 ±1, 0
Gravity G (graviton) 0

Table 1.2: The boson sector of the Standard Model.

particle expected to differ from this, carrying a spin of 0. If a graviton were to be

discovered, it is predicted to carry a spin of 2.

The Higgs Boson

In the Standard Model the W± and Z bosons do not have mass, yet when these

particles, and others, are produced and observed experimentally, they do. Simply

adding as mass term into the mathematics does not work, so some form of mechanism

acting on the particles must be introduced.

In 1964, three independent groups proposed such a mechanism [9–11], now com-

monly called the Higgs mechanism, which preserves all of the mathematical elegance

and consistency of the Standard Model, yet acts in such a way to allow certain par-

ticles to have mass (such as the W± and Z bosons), while leaving other particles

massless (like the photon). This mechanism is predicted to have an associated boson,

the Higgs boson, which could be produced and indirectly observed experimentally.

While the Higgs boson mass is not theoretically predicted, its coupling to mass

means that it would preferentially decay to the heaviest possible particles, for ex-

ample, a 180 GeV Higgs boson could decay to two real Z bosons, with 90 GeV mass

each.

In July 2012, at a meeting at CERN, the observation of a new particle, with a

mass around 125 GeV was announced, and the results from the two experiments

responsible, ATLAS and CMS, were published shortly after [12,13]. In March 2013, a

7
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Figure 1.2: A Feynman Diagram showing the process of top quark decay, via the weak
interaction. This is the same interaction as is responsible for beta decay (see figure 1.1),
but the top quark decays before it has chance to form a bound state.

study of the spin of the new particle was presented by ATLAS at a conference [14–16],

suggesting that the new particle has spin 0, consistent with a Standard Model Higgs

boson.

1.3 The top quark

The top quark is the most massive particle yet discovered and has the interesting

property that it decays very quickly, before the strong force can interact with it, as

shown in figure 1.2. Quarks in the Standard Model carry a colour charge (introduced

in section 1.2.2), red, green or blue. A phenomenon called confinement requires

that no coloured particle can exist on its own; it must form a colourless bound

state, by either combining red, green and blue, or by combining any colour with its

corresponding anti-colour. If a quark is produced on its own, the strong force will

create other quark anti-quark pairs until no colour charge exists on its own. This is

called hadronisation. The top quark is the only quark which is massive enought to

decay directly to a W boson before it has chance to hadronise, allowing some of its

properties to be passed on to the decay products. The top quark, like all fermions,

has spin 1
2
, which can have two possible orientations, +1

2
or −1

2
. These orientations

are often called spin up or spin down. In the LHC, top quarks are mostly produced

in quark-antiquark pairs.

8



1.3.1 Spin Correlation

For spin 1
2

fermions, produced in quark-antiquark pairs, the number of times the spin

directions are alike (↑↑ or ↓↓) compared to the number of times they are different

(↓↑ or ↑↓) is predicted to be non-zero in the Standard Model [17]. This property

may be verified by studying top quarks produced in pairs, providing a strong test

of the Standard Model. The top quark system is particularly suited to the study of

spin correlation, due to the fact that top quarks do not hadronise. This means the

spin of the top quarks at production is unaffected by the strong force, so the spin

information is propagated to the decay products.

The spin of a particle directly influences the angular distribution of its decay prod-

ucts, which can then be used to determine the amount of correlation in the spins

of the parent particles. The next chapters present a study of the spin correlation in

the tt̄ system, starting with a description of the experimental apparatus used.

9



Chapter 2
CERN and the LHC

2.1 The CERN Accelerator Complex

The Organisation Européenne pour la Recherche Nucléaire (CERN) complex (figure

2.1) is the largest particle physics lab in operation, with a diverse range of exper-

iments working with many different accelerators, the most well known being the

LHC. CERN was founded in 1954, on the Franco-Swiss border near Geneva, by a

council of 12 European governments. Since its foundation, CERN has expanded to

include 20 European member states and several ‘observer’ states, which are not di-

rectly involved in Council decisions. CERN itself employs around 2400 people, but

over 10,000 visiting scientists from 608 institutes and 113 nationalities contribute to

research, maintenance and building of the many experiments. Since its inception,

CERN has been responsible for many important discoveries in the field of particle

physics, including the discovery of neutral currents [19] and subsequently the W and

Z bosons [20], and more recently, the discovery of a ‘Higgs-like’ boson [12,13], which

may fill in the final gap in the current Standard Model∗.

The current chain of accelerators at CERN (see figure 2.2) is described next.

∗with the exception of neutrino oscillations
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Figure 2.1: An aerial view of the CERN complex and surroundings. The red ring shows
the location of the LHC, with the main CERN site touching the upper right of the ring.
Moving upwards through the photograph from the ring are Geneva Airport, Lake Geneva,
and Mont Blanc and the Alps in the far distance [18].

2.1.1 Luminosity

In a high energy physics experiment, the instantaneous luminosity is a measure of

the number of particles per unit area per unit time (cm−2 s−1),

L = fn
N1N2

4πσxσy
, (2.1)

where f is the revolution rate of the beam, n is the number of bunches of particles in

the beam, N1,2 are the number of particles in bunches 1, 2, and σx,y are the transverse

profiles of the beam.

For a process with a given cross section, σ (measured in units of area), the interaction

11



rate of that process is given by

R = Lσ, (2.2)

where R is the interaction per second for the process, given luminosity, L.

This interaction rate can then be integrated over time to give an estimate of the

expected number of interactions in a given data taking period. Since the cross

section does not change with time, this simplifies to an integral, over time, of the

instantaneous luminosity. The resulting integrated luminosity carries units of cm−2.

For convenience, the units are often quoted in inverse barns, b−1, where 1 b = 10−24

cm2. For the 2011 LHC data taking period, the total data recorded by ATLAS

corresponds to an integrated luminosity of 4.7 fb−1. Given that the production

cross section of top quark pairs at
√
s = 7 TeV† is around 170 pb [21], the total

number of top quark pairs produced in ATLAS in 2011 is close to 800,000.

†√s denotes the centre of mass energy of a collider experiment
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2.1.2 LINAC-2 and Proton Synchrotron Booster

The very beginning of the path of a proton through the LHC (see figure 2.2 for

an overview of the accelerator complex) is a bottle of hydrogen at the start of

the LINAC-2 accelerator. The hydrogen is ionised and the subsequent protons

are injected into LINAC-2. LINAC-2 accelerated its first beam of protons to 50

MeV in 1978, and has been used since to provide pulsed beams of protons to other

accelerators before being used for experiments on the Proton Synchrotron (PS),

Super Proton Synchrotron (SPS) and now the LHC.

The proton beam from LINAC-2 is injected into the four superimposed rings of

the Proton Synchrotron Booster (PSB), which accelerates the beams up to 1.4 GeV

ready for injection into the PS.

LINAC-3 is used to provide beams of heavy ions at 4.2 MeV/u (where MeV/u rep-

resents energy per nucleon) to Low Energy Ion Ring (LEIR), for further acceleration

and injection into the PS, SPS and finally the LHC during heavy ion running.

2.1.3 Proton Synchrotron

The PS accelerated its first protons in 1959, at the time the world’s highest energy

accelerator with an energy of 28 GeV. Later, in 1971, protons from the PS were

injected into the Intersecting Storage Ring, circulating two counter rotating beams

of protons, simultaneously. This led to the world’s first proton-proton collider.

In 1972, protons from the PS were used to create a muon neutrino beam, directed

at the Gargamelle bubble chamber, in order to look for neutral (equation 2.3) and

charged current (equation 2.4) events, signatures of the Weak interaction.

νµ/ν̄µ +N → νµ/ν̄µ + hadrons (2.3)

14



νµ/ν̄µ +N → µ+/µ− + hadrons (2.4)

The discovery of neutral currents observed in Gargamelle was published in 1973 [19].

The PS consists of 277 electromagnets arranged with a circumference of 628 m.

Proton beams of 1.4 GeV are injected into the PS and accelerated up to 25 GeV,

ready for injection into the SPS.

2.1.4 Super Proton Synchrotron

The SPS began running in 1976, and since then has been used in a wide range of

physics experiments. The SPS has been used to accelerate electrons, positrons, heavy

ions, protons and anti-protons, as well as being used to provide muon and neutrino

beams to experiments in the North and West Areas of CERN.

In 1983, the W and Z bosons were discovered in proton anti-proton collisions by the

UA1 [20] experiment and later confirmed by UA2 [22], which led to a Nobel Prize

for Carlo Rubbia and Simon van der Meer.

More recently, the SPS was used to provide beams for NA48, which studied CP

violation in kaon decays and will also provide the beams for NA62, the successor

to NA48. The SPS also provides beams of neutrinos for CERN Neutrinos to Gran

Sasso (CNGS), a tau neutrino detection experiment under the Gran Sasso mountain

in Italy. In order to create neutrinos, beams of protons are fired at a fixed target,

producing a directed spray of particles, including pions and kaons. The pions and

kaons decay to muons and muon neutrinos, and the beam passes an absorber, which

stops the remaining undecayed pions and kaons, as well as the muons, leaving a

beam of neutrinos.

The SPS uses 1317 electromagnets to guide beams of particles around its 7 km

15



circumference, attaining energies up to 450 GeV. During LHC running, proton beams

at 450 GeV are then removed from the SPS and injected into the LHC at two points

to create two counter rotating beams.

2.2 Large Hadron Collider

The LHC is the world’s largest particle accelerator; with a total circumference of

26.7 km, and crossing the Franco-Swiss border twice. The same tunnel housing

the LHC was used previously for the Large Electron Positron collider (LEP) exper-

iment, which ran from 1989 until 2000. In addition to being the largest particle

accelerator, the LHC also holds the world records for highest energy and highest lu-

minosity, running in 2012 with an energy of 8 TeV and an instantaneous luminosity

of 7.73×1033 cm−2 s−1.

To achieve this, the LHC incorporates over 9000 magnets, operating at temperatures

under 2 K. The magnets in the LHC can be subdivided into three categories; dipole

magnets, quadrupoles and correcting magnets.

The 1232 dipole magnets operate with a nominal current (at 7 TeV per beam) of

11.85 kA, providing a magnetic field of 8.33 T, in order to bend the proton beams

around the circumference of the LHC tunnel. In addition to bending the proton

beam, it needs to be periodically focussed, since the charged protons will tend to

repel and cause the beam to diverge. To do this, 392 quadrupole focussing magnets

regulate the horizontal and vertical beam widths. There are several other correcting

magnets used to correct orbital perturbations, focussing the beam at the interaction

points of the four main experiments and guiding the beam in the occasion of a beam

dump.

A cross section of a dipole magnet is shown in figure 2.3. Figure 2.4 shows a typical

magnetic field map for an LHC dipole magnet. Figure 2.5 shows the superconducting

16



Figure 2.3: A crosssectional slice of an LHC dipole magnet. The two beam pipes circulate
counter rotating beams of protons [23].

Figure 2.4: A typical magnetic field map for an LHC dipole magnet. The maxima of
the field coincide with the two beam pipes, providing the bending field for the proton
beams [24].
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Figure 2.5: An example of the superconducting Ti-Nb cable used to provide the magnetic
field in the LHC dipole magnets. From the left of the picture, the cable is deconstructed
into its constituent filaments, which are collected in strands. The strands are then wrapped
in bunches of 36 to create the complete cable. c© CERN. [25]

Nb-Ti cable used throughout the LHC magnets.

2.2.1 Acceleration and bunching

Once the LHC captures the beam injected from the SPS, the beam energy is 450 GeV.

In order to reach higher energies, the beam must undergo acceleration. Magnetic

fields are able to alter the trajectory of the particles but cannot accelerate them.

To do this, an electric field is required. In the LHC, this is provided by the Radio

Frequency (RF) cavities. The RF system provides a longitudinal, oscillating electric

field in order to provide an accelerating voltage to particles passing through the RF

gap. In order for a particle to experience an acceleration each turn rather than a

deceleration, the RF frequency must be exactly an integer multiple of the revolution

frequency of the particle.

Consider a particle with momentum such that its revolution frequency coincides

with the RF frequency. If this particle were to arrive at the RF cavity such that it

experiences zero voltage, it would experience zero acceleration and continue with

the same momentum and path length around the accelerator, arriving at the same

time to the RF cavity each revolution (assuming negligible energy losses). This is

called the synchronous particle.

18



Figure 2.6: Illustration showing acceleration in an RF cavity, V is the voltage at a given
time, t. The green particle arrives early to the cavity and experiences a boost to increase its
path length, the red particle arrives late on a longer path and so experiences a deceleration.
The black particle is the synchronous particle.

Consider another particle arriving simultaneously at the RF cavity, but with lower

momentum. This particle would travel a shorter path around the accelerator, arriv-

ing earlier than the synchronous particle after the first revolution. This particle then

experiences an acceleration, boosting it to a longer path length, making its time of

arrival at the RF cavity slightly later. If it arrives later than the synchronous particle,

it will experience a deceleration, reducing its path length, and so on. The resulting

behaviour is that the particle oscillates around the synchronous particle [26]. This

concept is illustrated in figure 2.6.

During the acceleration, or ramping, phase of the LHC, the magnetic field is smoothly

ramped up, causing the path lengths of each particle to shorten, making them appear

as though they had arrived early and thus receiving a boost at the RF gap.

With many particles in the beam, there tend to be bunches forming around the

synchronous points in the RF system, known as RF buckets. In the LHC the nominal

RF frequency is 400.789 MHz, which corresponds to RF buckets spaced by around

2.5 ns. The design filling scheme for the LHC uses bunches spaced by 25 ns, meaning
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Figure 2.7: Diagram showing beam sizes around the interaction point in ATLAS, Inter-
action Point 1 (IP1). The beams are focussed and directed towards each other at which
point the protons in crossing bunches have a chance of colliding. c© CERN. [27]

only every tenth bucket is filled. This is in part to reduce the amount of pileup, but

also to allow for different bunch crossing configurations for the different experiments.

2.2.2 Interaction points

Around the LHC ring there are four points at which the two counter rotating beams

cross, called interaction points. At these points the beams are squeezed to as small

a size as possible‡ at the crossing point to maximise the chance of a collision taking

place. Throughout the majority of the LHC ring, the beams are of the order of

a millimetre in diameter, being squeezed to around 20 microns at the interaction

points. Figure 2.7 shows the relative sizes of the two beams around an interaction

point.

At the interaction point, bunches of protons from each beam cross and some of

the protons within the bunches collide. In the LHC the number of interactions per

bunch crossing is generally between 5 and 30 (see Figure 2.8), depending on the

beam parameters.

‡With the exception of LHC-beauty (LHCb), where the beam is defocussed to reduce the amount
of pileup produced in the collisions.
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Figure 2.8: The average number of interactions per crossing, measured in 2011 and 2012
data. The average number of interactions is calculated for each lumi block subdivision of
data [28].

In 2011, the LHC ran with beams at half the nominal energy, at 3.5 TeV per beam.

The maximum number of bunches per beam was 1380, with up to an average 18

interactions per bunch crossing (see figure 2.9), and maximum instantaneous lumi-

nosity of 3.65× 1033 cm−2 s−1 (see section 2.1.1).

Since the bunches in the LHC contain of around 1011 protons, there may be multiple

interactions per bunch crossing. The detectors recording these interactions experi-

ence pileup, when multiple interactions coincide. See section 3.7 for a description of

pileup and attempts to manage it with ATLAS.

In order to observe the interactions, at each of the four interaction points stands a

purpose built experiment designed to study the collisions and the resulting particles

produced. LHCb aims to investigate many areas of flavour and electroweak physics,

primarily looking at the decays of B-hadrons. In particular, CP-violation and very

rare B-hadron decays are two topics heavily scrutinised by the experiment, leading

to such results as the first evidence for the decay Bs → µ+µ− [30] and evidence for
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Figure 2.9: Average number of interactions per bunch crossing for the 2011 7 TeV proton-
proton running period. The data taking period each day is split into lumi-blocks and the
maximum value of the average over all lumi blocks per day is shown in this plot [29].

CP-violation in B± decays [31].

A Large Ion Collider Experiment (ALICE) is designed to study collisions of lead nuclei

in order to give an insight into the very high temperatures and densities produced,

and to study the quark-gluon plasma - a state of matter where quarks and gluons

no longer experience confinement. In 2010, the ALICE collaboration published the

first study of the quark-gluon plasma at the LHC [32], confirming the theoretical

prediction that its properties are consistent with that of an ‘ideal liquid’.

Compact Muon Solenoid (CMS) and ATLAS are both ‘general purpose’ detectors;

rather than being designed for specific physics studies like LHCb and ALICE, CMS

and ATLAS are intended to record as much data as possible in order to search for

new or unobserved physics signatures, such as the Higgs boson or Supersymmetry,

and for the further study of known physics such as the top quark.

One of the first discoveries to come from the LHC was of the χb(3P) at ATLAS [33] -
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a bound state consisting a b-quark and a b-antiquark, which was predicted to exist

but had remained previously unobserved.

In addition, several measurements of previously measured quantities were published,

including W and Z boson cross section measurements [34] and a tt̄ cross section

measurement [35]. This has continued at ATLAS and over 200 physics papers have

been published in various journals.

Later, but arguably the most important discovery at the LHC so far was that of a

‘Higgs boson-like’ particle, announced by both CMS and ATLAS in June 2012 and

published in July 2012 [12,13].

2.2.3 Timeline of LHC running

The first beam of protons circulated in the LHC on the 10th September 2008, suc-

cessfully steering the beam alternately clockwise, then anti-clockwise.

As mentioned in section 2.2 the very large current needed to maintain the large

magnetic fields used in the LHC requires superconducting cable, made of a Niobium-

Titanium alloy. The cable itself is composed of 36 strands of wire, with each strand

containing around 6500 Nb-Ti filaments. In order to maintain the superconductivity

at such high magnetic field strengths, the Nb-Ti cables are cooled with liquid helium

to 1.9 K.

In the event that the cable leaves its superconductive state, becoming again a normal

conductor, the large current will cause a significant temperature increase in both the

cables and surroundings, and the stored energy in the magnet is dissipated. This

is called a quench. In order to minimise the potential damage caused by a magnet

quench, the LHC has a quench protection system in place. The basic principle of

this system is to detect quickly a quench and take measures to ensure the quench

happens in a controlled and safe manner. This can be done by allowing the current
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to pass through a diode, bypassing a single magnet once it becomes resistive; by

introducing a dump resistor to reduce the current; or, by heating the entire magnet

in order to force the resistive region to grow more rapidly, effectively spreading the

temperature increase over a larger area and reducing the increase at the quench

start point.

Not detecting a quench in time to safely reduce the current can cause all of the stored

magnetic energy to dump into a small region, which was the cause of the accident

on 19th September 2008, in which an interconnecting superconductor, which was

not encompassed by the existing quench protection system at the time, developed a

resistive region. The energy released by the accident (moving some of the magnets),

caused a burst in the liquid helium system, flooding the LHC tunnel with tonnes of

helium. The accident damaged several of the dipoles and set back the start of the

LHC running by over a year.

Following the accident and subsequent repair effort, the LHC was ready to begin

circulating beams once again in November 2009 and the first proton-proton collisions

occurred on the 23rd. Then, on the 29th, the LHC broke the world energy record,

previously held by the Tevatron accelerator at Fermilab, by accelerating protons to

an energy of 1.05 TeV, before continuing to ramp up in energy in order to start taking

data from collisions at a centre of mass energy of 7 TeV. In 2010, the instantaneous

luminosity reached a maximum of 2.07 × 1032 cm−2 s−1, yielding a total delivered

luminosity to ATLAS of 48.1 pb−1. 2011 saw an increase in the number of bunches

per beam bringing the peak luminosity up to 3.65 × 1033 cm−2 s−1 and delivering

5.61 fb−1 to ATLAS, as well as breaking another of the Tevatron’s records; the LHC

became the highest luminosity hadron collider.

In 2012, the energy of the LHC was increased to 4 TeV per beam. Coupled with

improvements to the beam optics allowing for more tightly squeezed beams, the

instantaneous luminosity increased by a factor of 2, the peak luminosity reaching

7.73× 1033 cm−2 s−1 and delivering 23.3 fb−1 to ATLAS. Although the experiments
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Figure 2.10: Delivered and recorded integrated luminosity for the 2011 7 TeV running
period. The yellow plot shows the recorded luminosity from the total delievered luminosity
(shown in green) [29].

Figure 2.11: Cumulative delivered luminosity to ATLAS for 2010 and 2011 7 TeV running
and 2012 8 TeV running [29].
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have the potential to record all of the delivered luminosity, downtime and detec-

tor inefficiencies mean that a small fraction of the luminosity is lost. Figure 2.10

shows the recorded luminosity for the 2011 proton-proton run overlaid on the total

LHC delivered luminosity. Figure 2.11 shows a comparison between the delivered

luminosity to ATLAS for each year of the LHC running.
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Chapter 3
The ATLAS Detector

ATLAS, shown in figure 3.1 is the largest detector at the LHC, standing 22 m in

diameter and 42 m in length. The primary reason for the size of ATLAS is the

sophisticated toroidal magnet system which takes up much of the space between the

calorimeter and the outer muon chambers.

ATLAS is designed as a ‘general purpose’ detector, meaning it must be capable of

observing both known and as yet unseen processes. The search for the Standard

Model Higgs boson was one of the driving factors in evaluating the design and

performance of ATLAS during conception. The Higgs boson has a range of production

and decay channels, providing ATLAS with a challenge to be able to detect and

measure each channel with sufficient experimental resolution in order to be senstive

to a discovery. This requires excellent performance in charged particle detection,

electron and photon identification, muon identification and jet measurements, as

well as accurate missing energy determination. The performance goals for each

subdetector are shown in table 3.1.
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To achieve this, ATLAS employs a layered structure (seen in figure 3.2, showing how

various particles interact with each layer), with a charged particle tracking system

enclosed in a 2 T solenoid at the centre, surrounded by electromagnetic and hadronic

calorimeters, and finally a large muon tracking system utilising the peak 4 T toroidal

magnetic field on the outermost layer.

Figure 3.2: Various particles travelling through the layers of ATLAS. Each particle inter-
acts differently with the different parts of the detector. This produces distinct signatures
for particles which aid in particle identification. ATLAS Experiment c© 2013 CERN.

3.1 ATLAS Coordinate Systems

In high energy physics, collider experiments are often cylindrical in design and, as

such, Cartesian coordinates are not always the optimal system in which to perform

measurements. In ATLAS, a spherical coordinate system is also employed, where

φ is the azimuthal angle in the transverse plane, perpendicular to the beam line.
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Sub Detector Required Resolution

Tracker σpT
/pT = 0.05% pT ⊕ 1%

EM Calorimeter σE/E = 10%/
√
E ⊕ 0.7%

Hadronic Calorimeter

barrel and end-cap σE/E = 50%/
√
E ⊕ 3%

forward σE/E = 100%/
√
E ⊕ 10%

Muon Spectrometer σpT
/pT = 10% at pT = 1 TeV

Table 3.1: Performance goals of the ATLAS detector as laid out in Ref. [36]. The notation
⊕ indicates the amount to be added in quadrature.

Defining the positive Cartesian x-axis as horizontal towards the centre of the LHC,

φ is conventially measured in the range [−π,+π] with φ = 0 corresponding to

the direction along the positive x-axis, and increasing towards the positive y-axis,

which extends vertically upwards. The z-axis is then defined with a right handed

Cartesian system, that is to say φ increases clockwise when looking along the positive

z-direction.

Due to the slight tilt of the LHC tunnel with respect to the ATLAS cavern, the system

is rotated from the LHC coordinate system with the y and z axes offset by 0.7◦.

R, or ρ, describes the distance from the centre of the detector, and θ is the angle

measured from the positive z-axis. The pseudorapidity, η of a particle is often used

in place of the polar angle θ, where η is defined as

η = − ln

[
tan

(
θ

2

)]
. (3.1)

The ATLAS coordinate system is illustrated in figures 3.3 and 3.4.
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Figure 3.3: The ATLAS detector in the transverse (x, y) plane, showing the definition of
the azimuthal angle, φ, and radial distance, ρ.
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Figure 3.4: The ATLAS detector shown in the longitunal (ρ, z) plane, showing the defini-
tion of the polar angle, θ.
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3.2 Inner Detector

Figure 3.5: The ATLAS Inner Detector [37].

With tens of interactions per bunch crossing, ATLAS could see of the order 103

charged particles emerging from the interaction point every bunch crossing. Such

high track multiplicities warrant excellent tracking and vertexing in order to dis-

entangle the events. The Inner Detector (ID) in ATLAS extends to |η| < 2.5, and

approaches as close as 50 mm to the beam line, with the goal of detecting, with

a high granularity, charged particles to allow reconstruction of tracks and vertices

to a high precision. Figure 3.5 shows a schematic diagram of the ATLAS ID. The

momentum resolution as a function of momentum is shown in figure 3.8.

The material budget in the ID must be kept low to minimise photon conversions and

nuclear interactions. The material usage in the ID, measured in radiation lengths,

is shown in figure 3.6. In the range |η| < 0.6 the material budget is very low, but

beyond this range the geometry of the detector and the need for services, including
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Figure 3.6: The material usage of the ATLAS Inner Detector, measured in radiation lengths
(X0)∗ [37].

read out channels, means the material in the ID unavoidably increases.

3.2.1 Pixel Detector

The closest instrumentation to the beam pipe is the pixel detector, which constitutes

three concentric cylinders in the barrel region and three disks on each end cap.

Overall, the pixel tracking volume extends to a total length of 1.3 m with a barrel

outer radius of around 12 cm [39].

The pixels on each module have a minimum size of 50 µm × 400 µm, and the first

layer has an inner radius of around 50 mm. Each track will generally pass through

three pixel layers, with a high granularity in the φ and z coordinates, allowing for

accurate vertex determination of the interaction point, which is of particular interest

when identifying displaced vertices.

∗Radiation length is a measure of the energy loss of a high energy particle equal to the av-
erage distance an electron can traverse a material before losing all but 1/e of its energy by
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Figure 3.7: Schematic showing the |η| acceptance of the components of the ID [37].

3.2.2 Semi Conductor Tracker

The Semi Conductor Tracker (SCT) lies concentric to the pixel detector, with a

sensitive barrel region 1.5 m in length and 30–51 cm in radius. The SCT barrel

consists of 4 layers of tracker, with 9 disks on each endcap, extending the forward η

acceptance, as shown in figure 3.7.

Each SCT barrel module is made up of two silicon micro-strip sensors with a stereo

angle of 40 mrad, with each 12 cm long strip separated by 80 µm and with 768 strips

per sensor. The strips run parallel to the beamline, giving a fine granularity in φ,

with a resolution of around 17 µm in Rφ [36]. The stereo angle allows a measurement

in the z direction (Figure 3.9) with resolution of around 580 µm, while remaining a

small enough angle to reduce ‘ghost’ hits.

The SCT endcap modules are wedge shaped and arranged into disks. The strip pitch

of the modules varies with radius between around 55 µm and 95 µm, and the pairs

of strip sensors are arranged with a stereo angle of 40 mrad. The endcap modules

Bremsstrahlung.
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Figure 3.8: Momentum resolution of the ATLAS Inner Detector, as a function of transverse
momentum [38].

give a stereo measurement resolution of around 500 µm, and perpendicular to the

strips, a resolution of around 20 µm [36].

3.2.3 Transition Radiation Tracker

The Transistion Radiation Tracker (TRT) uses an array of 144 cm long drift tubes

to make measurements of charged particles. Each gas filled tube is around 4 mm in

diameter and gives a spatial resolution in Rφ of about 130 µm per tube [36], from the

drift time information. The TRT is designed such that particles with pT > 0.5 GeV

cross around 36 drift tubes, allowing for high accuracy momentum measurements in

the rφ plane, and improving on the momentum resolution of tracks reconstructed

only with silicon hits. In addition to the tracking, the TRT provides separation

of electrons from hadrons in the momentum range 1–150 GeV, due to transition
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Figure 3.9: The SCT uses two layers of strips oriented at an angle relative to each other
to obtain a rough measurement in z. If a particle is incident at the X, then a hit will be
reconstructed in the highlighted area.

radiation†.

3.3 Calorimetry

The goal of the ATLAS calorimeters is to provide accurate measurement of the posi-

tion and energy of electrons, photons and jets, as well as accurate determination of

the missing transverse energy‡, Emiss
T , in an event. The calorimeter can also provide

particle identification, and is used to select events at the triggering level.

The ATLAS calorimetry is split into two sections. An EM calorimeter [41] covers

the range |η| < 3.2, with a hadronic calorimeter [42] outside the EM calorimeter,

covering the range |η| < 1.7 in the barrel and 1.5 < |η| < 3.2 in the endcaps. There

are also forward calorimeters each side of the barrel, covering the pseudorapidity

†Transition radiation occurs when a high γ particle (such as an electron) crosses a transition
region between two materials with differing electric constants. For electrons this radiation can be
detected to aid in particle identification [40].
‡The initial momentum in the xy plane is zero, as the incident beam is oriented along the z

axis. To conserve momentum, the final state momentum must also sum to zero. Any discrepancy
is called ‘missing’
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range 3.1 < |η| < 4.9.

Figure 3.10 shows the extent in η for each of the calorimeter components, where

each component of the hadronic calorimeter is divided into its constituent layers.

The bottom unmarked layer corresponds to material before the calorimeter, which

includes the ID material and the solenoid magnet. The hadronic tile calorimeter

is shown extending over the range |η| < 1.7. Also shown are the hadronic endcap

calorimeters (HEC) and the forward calorimeters (FCAL). The large material bud-

get is required in order to contain electromagnetic or hadronic showers, absorbing

all of the energy before the shower is able to exit the extent of the calorimeter.

The ATLAS calorimetry uses a sampling technique, where two different materials are

used in order to cause first a particle to interact, and second, detect the showered

particles. This is as opposed to a homogenous calorimeter in which the showering

material and the sampling material are one and the same.

Figure 3.10: Material content of the ATLAS calorimeters over |η|, expressed in interaction
lengths§. This plot also includes contributions from material before the calorimeter (the
bottom most layer), and from the muon system after the calorimeter (the top most layer)
[37].

The technologies used for the Electromagnetic calorimeter and the Hadronic calorime-

ters in ATLAS are described in the next sections.

§The interaction length of a material denotes how much material is needed to reduce a number
of high energy neutrons to 1/e their original number.

38



3.3.1 Electromagnetic Calorimeter

Figure 3.11: The Liquid Argon calorimeter is constructed with an accordion pattern to
reduce potential cracks in acceptance [37].

The EM calorimeter uses a lead and liquid argon system, with electrodes arranged in

an accordion pattern to minimise cracks in the φ coverage, and constructed in two

separate halves, with a small gap at η = 0 to allow for services. Figure 3.11 shows

the accordion structure of the LAr calorimeter. In the region |η| < 2.5, the EM

calorimeter is segmented into three samplings, the first having a depth of 4.3X0,

constant in η and finely segmented to provide an accurate η measurement. The

second sampling is split into towers of ∆η ×∆φ = 0.025× 0.025, with depth 16X0

and the third sampling has towers twice the size, at ∆η ×∆φ = 0.05× 0.025, with

depth varying with η from 2X0–12X0 [41].

The remaining EM calorimetry, in the end-cap for |η| > 2.5, uses the same lead-

liquid argon technology, but with a coarser granularity while still being sufficient to
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Figure 5.35: Linearity of response as a
function of the electron beam energy, Ebeam,
for a barrel LAr electromagnetic module
at |h | = 0.687. All points are normalised to the
value measured at Ebeam = 100 GeV. The band
represents the total uncertainty on the beam en-
ergy measurement.

Figure 5.36: Fractional energy resolution as
a function of the electron beam energy, Ebeam,
for a barrel LAr electromagnetic module
at |h | = 0.687. Electronic noise was subtracted
from the data before plotting the results. The
curve represents the results of a fit to the data
using eq. 5.2.

The response uniformity at high energy as a function of h has been measured using an elec-
tron beam of 245 GeV for the barrel and of 119 GeV for the end-cap [140]. The goal for AT-
LAS is to achieve a constant term of 0.7% or smaller over the full calorimeter acceptance. Non-
uniformities of the response on the tested modules do not exceed 0.7% and do not exceed even 0.5%
in the case of the barrel modules, as shown in figure 5.37. The overall constant term in the energy
resolution, using the above formula, ranges between 0.5% and 0.7% and therefore meets well the
calorimeter design performance goals.

The performance of the barrel electromagnetic calorimeter in terms of its finely segmented
first sampling has been studied by using electron, photon and pion beams [145]. The position
resolution along h was measured to be about 1.5⇥10�4 and 3.3⇥10�4 (in units of pseudorapidity)
at 245 GeV for the front and middle layers, allowing to achieve a polar angle resolution in the
range 50–60(mrad)/

p
E (GeV) over the whole coverage (barrel and end-caps). The p0 rejection

was measured from real data, using a photon beam and mixing together different events to mimic
photon pairs from p0 decays, and found to be 3.54±0.12 (statistical) for p0 with pT = 50 GeV and
for a single photon efficiency of 90%.

A spare electromagnetic barrel module, identical to the series modules, was built for the
combined test-beam period described in section 10.1.2 and was exposed to electron, photon, pion
and muon beams with energies between 1 and 350 GeV. The amount of material in front of this
module was very close to the material expected in ATLAS and therefore great importance was given
to the task of verifying that the linearity, energy resolution and uniformity [148] are well understood
in terms of the detector description and the simulations using GEANT 4. The performance of
the electromagnetic calibration scheme, using longitudinal weights similar to the ones described
above, was tested by adding in a controlled way different amounts of material just in front of the
electromagnetic calorimeter. This extra material corresponded to 2.4–3.3 X0 and emulated in this
way the material in front of the LAr barrel calorimeter in ATLAS in the region |h | < 1.2. A linearity

– 155 –

Figure 3.12: Energy resolution as a function of electron beam energy for LAr barrel
modules of the EM calorimeter.

fulfill the Emiss
T and jet measurement requirements. Figure 3.12 shows the fractional

energy resolution in the EM calorimeter as a function of electron beam energy [36].

3.3.2 Hadronic Calorimeter

The hadronic calorimeter in ATLAS uses a similar LAr technology as the EM calorime-

ter in the endcaps and forward calorimeter, though with a copper absorber in the

endcaps and the first forward calorimeter layer, and a tungsten absorber in the

latter layers of the forward calorimeter. The hadronic endcap (HEC) covers a pseu-

dorapidity range of around 1.5 < |η| < 3.2 and the forward calorimeter (FCAL)

continues the coverage from 3.1 < |η| < 4.9.

In the barrel region (|η| < 1.7) ATLAS employs tile calorimetry. The tile calorimeter

uses an iron absorber with scintillating tiles, attached to photomultiplier tubes to

read out the energy deposition. Each of the iron tiles is 3 cm thick, perpendicular

to the beam and staggered with radius. In total, the calorimeter system provides
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high-energy beams. Electron showers are mostly contained in the first radial layer, therefore precise
response values can only be extracted from this first layer of cells. The spread of these responses
over the entire exposed module sample is up to 3%. The electron response is linear with deviations
of about 1%. The electron response is observed to vary with the angle of incidence, as expected
because of the variation in the effective calorimeter granularity with angle. Between extremes,
corresponding to angles to the tile/steel plate planes from 0� to 90�, the response increases by
approximately 8%.
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Figure 5.44: Fractional energy resolution ob-
tained for pions as a function of the inverse square
root of the beam energy at an angle of incidence
equivalent to |h | = 0.35.

Systematic measurements were per-
formed using hadron beams with energies in
the 20–180 GeV range, with a few additional
runs at 350 GeV. The set-up consisted of a
vertical stack of three modules, in which the
production module under test occupied the
central position. For hadrons incident on
this module, transverse leakage of hadron
showers is approximately 1%, while lon-
gitudinal leakage significantly affects the
resolution particularly at higher energies and
lower impact angles.The beams typically
contained a mixture of pions, kaons and
protons. The beam-line included a Cerenkov
counter which was used to separate pions and
protons in the case of positive beam energies
(between 50 GeV and 180 GeV).

The fractional energy resolution, sE/E, for isolated pions was studied as a function of beam
energy and impact angle. The results are summed at the electromagnetic scale over all cells and the
resulting energy resolutions for h = 0.35 are shown in figure 5.44. The parametrisation of eq. (5.2)
was used to fit the results and the best fit yields a = (56.4 ± 0.4)% and b = (5.5 ± 0.1)%. The
statistical errors quoted here do not display the correlation between the two terms. These results
are in good agreement with earlier stand-alone measurements made with prototype modules, when
accounting for the fact that the latter were radially longer by 1.5 interaction lengths in order to
represent the total depth of electromagnetic and hadronic calorimetry.

The fractional energy resolution for production modules displays a significant dependence
on h , mostly as a result of the increase in effective depth and decrease of longitudinal leak-
age as h increases. As representative examples, sE/E at h = 0.25 is (14.2±0.1)% at 20 GeV
and (6.6±0.1)% at 350 GeV, whereas, at h = 0.55, sE/E is (13.0±0.1)% at 20 GeV and (5.9±0.1)%
at 350 GeV. The module-to-module uniformity has been studied with 180 GeV pions entering the
calorimeter under various impact points and incidence angles. The uniformity in the mean response
was found to be independent of h over all modules measured in the test-beam and shows an average
spread of 1.4% [157].
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Figure 3.13: Fractional energy resolution as a function of the inverse square of energy for
pions up to 350 GeV in the ATLAS hadronic calorimeter.

around 11 interaction lengths at η = 0, which is sufficient to reduce the amount

of hadronic punch through to the muon system to a negligible amount. Around 10

interactions lengths are sufficient for the required resolution performance of high

energy jets [43]. Figure 3.13 shows the fractional energy resolution of pions in the

hadronic calorimeter as a function of pion energy [36]. The tile cells are segmented

into towers of ∆η ×∆φ = 0.1× 0.1, giving around 10,000 readout channels.

3.4 Muon Spectrometer

The ATLAS muon system sits on the outside of the detector, operating conceptually

similarly to the ID. Particles leaving the calorimeters are measured in the muon

spectrometer. If the track, reconstructed in the muon system, matches a track

reconstructed in the ID, both tracks are combined as a ‘muon’. Due to the bending

direction in the toroidal magnetic field being perpendicular to that in the ID, the
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muon spectrometer allows an independent measurement of the muon momentum.

Figure 3.14: Overview of the ATLAS muon system [44].

3.4.1 Monitored Drift Tubes

The Monitored Drift Tubes (MDT) detector provides the primary momentum mea-

surement in the muon system, with an area of almost 5500 m2 covering ATLAS over

the full φ range and |η| < 2. An aluminium drift tube of 30 mm diameter filled with

a gas mixture composed of Ar/N2/CH4 (91%/4%/5%) with a central wire measures

the ionisation of muons as they traverse the chamber, with a spatial resolution of

80 µm. The MDT are aligned perpendicular to the beam, such that an accurate mea-
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Figure 3.15: Overview of the ATLAS toroid magnet system. c© CERN.

surement can be made in the R–z projection, while the positioning of the tube gives

very rough positioning information in φ. As the MDT are fairly long (between 1 and

6 m) and cover such a large area, it is difficult to maintain constant environmental

conditions, such as gas temperature and composition, as well as sagging in the tubes

themseleves, so these conditions are monitored closely to allow for corrections and

calibrations to be made. The MDT detectors are present in the barrel and endcaps

of ATLAS, and make up the largest part of the muon system.

3.4.2 Cathode Strip Chambers

While the MDT detector performs well in the barrel and |η| < 2 endcap ranges,

the large particle fluxes at high pseudorapidity make them unsuitable for use in the
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2.0 < |η| < 2.7 range. At these forward regions, Cathode Strip Chambers (CSC) are

used. The CSC are multiwire proportional chambers, providing a spatial resolution of

80 µm with a short drift time. In comparison with the MDT, which have a maximal

drift time of 500 ns, the CSC are more than 10 times faster, with drift times less

than 30 ns.

3.4.3 Resistive Plate Chambers

Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) have a fast readout

and are used mainly for triggering rather than precision measurement. The RPC

provide triggering in the barrel region and are made of two resistive plates with a

gas gap. A muon ionises the gas and the electric field in the chamber produces

an avalanche of electrons. The signal is then read out to provide a coarse position

measurement, along with ∼ 1ns precision timing information, which is used for the

trigger.

3.4.4 Thin Gap Chambers

The TGC provide triggering in the endcap regions, as well as providing an azimuthal

measurement to complement the MDT measurement. The TGC are similar to mul-

tiwire proportional chambers, which allow a 2 − 3 mrad azimuthal resolution by

measuring which wires in the chamber register, while staggering their placement.

As with the RPC, the TGC have a fast readout time, which is required for the fast

response of the ATLAS trigger system.
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3.5 Magnetic Field

The magnetic fields in ATLAS are used for momentum measurement of charged

particles in the ID and muon system. Two separate systems are used to provide the

fields for the ID and muon system; the solenoid and toroids, respectively. The ATLAS

solenoid is an Al and NbTi/Cu superconductor, located within the LAr cryostat,

cooled to 4.5 K. The solenoid provides a magnetic field of 2.0 T to the tracking

volume for momentum measurement.

The toroid system is the largest magnetic system in ATLAS, as well as the system

giving ATLAS its name. The toroidal field is provided in the barrel region by 8 large

superconducting coils, situated outside of the hadronic calorimeter. The coils are

cooled to 4.6 K for a current of up to 20.5 kA to provide a peak field of 3.9 T.

The barrel toroids are completed on each end by two end cap toroids. Because the

toroidal field is created by three separate magnets, the transition regions between

each magnet can be complicated, and in order to achieve accurate momentum mea-

surements, this transition region must be modelled very well. Magnetic field maps

in the transverse and longitudinal planes are shown in figures 3.16 and 3.17.
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Figure 3.16: Magnetic field map in the transverse plane at fixed z = −20 cm [45].
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Figure 3.17: Magnetic field map in the longitudinal plane at fixed y = 10 cm [45].
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3.6 Trigger

The LHC can provide a bunch crossing, or event, in ATLAS as frequent as every 25 ns,

a rate of 40 MHz. This rate is far too high to write to disk, both due to the speed

needed to write the events to disk, as well as the storage space needed, given that

each event can be up to 1.6 MB in size (see section 3.8). Fortunately, not every

bunch crossing will contain an event interesting enough to record, so some events

can be thrown away. In order to do this, ATLAS employs an online trigger system,

which decides whether or not to record an event based on activity within the event.

The ATLAS trigger is split into three layers, each looking in more detail at the event.

The Level 1 Trigger must decide every 25 ns if an event should pass to the next

level or not, which poses a problem, as the signals from the detector cannot reach

the trigger hardware in such a short timescale. In order to compensate for this, the

trigger uses an event pipeline, which stores data in a buffer to allow more time to

make a decision. The pipeline allows 2.5 µs for a decision, before the on-detector

memory fills up, of which 1 µs is allocated to the transfer of data from the detector

to the trigger, which is located outside of the main detector cavern. A further 0.5 µs

is left as contingency, leaving 1 µs to make the decision.

The Level 1 Trigger looks at a limited selection of data from the detector, including

a coarse summary of calorimeter activity, without depth information, as well as hits

from the muon RPC and TGC. A set of fast algorithms looks at this information

and decides if the event is interesting or not based on a menu of items, as well

as creating an Region of Interest (ROI) for each interesting object. Even after the

events are filtered in this way, the rate of interesting events may still be too high, at

high luminosities. To address this, a prescale is implemented which takes a random

sample from events satisfying a certain item in the menu. The output rate of the

Level 1 Trigger is defined by the input rate to the Level 2 Trigger, which is 75–

100 kHz. The prescale is set through keys, where a key of X means only a fraction
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1/X events are saved.

The Level 2 Trigger looks at the ROIs from Level 1 with higher granularity calorime-

ter information, as well as using the tracking information, to make a further decision

on whether the Level 1 passed events are interesting or not. The Level 2 trigger has

a more relaxed time limit, of around 10 ms, in which to make its decision, given

the lower input rate, which affords it the ability to look in much more detail than

Level 1. The Level 2 Trigger aims to reduce the event rate to around 1 kHz, at

which point the Event Filter (EF) can run more sophisticated algorithms to make a

final decision if the event should be stored, with a goal rate of around 200–400 Hz,

a much more manageable rate for data storage.

3.7 Pileup

The total interaction cross section for proton-proton collisions at 7 TeV is around

69 mb [46], and with a luminosity close to 1034 cm−2 s−1 gives around 25 interactions

per bunch crossing. If an interesting interaction takes place, the trigger will fire and

decide whether or not to record the event. The cross section for an ‘interesting

interaction’ which fires the trigger may be several orders of magnitude lower than

the total proton-proton cross section (see Figure 3.18). The other interactions in

the bunch crossing will likely be from soft QCD interactions. The extra hits in

the detector can create problems when reconstructing, by introducing extra tracks

or jets, as well as producing additional displaced vertices. Pileup resulting from

extra interactions within the same bunch is called ‘in time’ pileup. In addition,

interactions in neighbouring bunch crossings can be seen by some subdetectors, due

to the long readout times with respect to the bunch spacing. This is called ‘out of

time’ pileup.

As pileup presents a significant challenge in untangling recorded events, accurate
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tracking and good vertexing are needed to identify the extra vertices, and a good

pileup simulation helps to understand the effects of pileup on a given analysis.

3.8 ATLAS Event Data Model

ATLAS can record several events per second, with billions of events stored on disk

each year. A typical event in its ‘RAW’ format is around 1.6 MB, so storage space

for datasets must be of the order of petabytes. This poses a problem to an end user

intending to analyse this data, due to limited computing power available. In order

to combat this issue, the data are processed into smaller formats, removing much of

the information a typical analyser does not need.

Event Summary Data (ESD) contains output from the detector reconstruction, such

as tracks and tracking hits, calorimeter cells and muon hits, as well as further

reconstructed objects like jets and electrons. The ESD contains information sufficient

for calibration studies, tracking algorithm tuning and particle identification. The

target size for ESD is less than half that of the RAW data, at 500 kB, though this is

still too large for frequent and fast analysis algorithms.

Analysis Object Data (AOD) provides a general summary of the event, containing

only information relevant to common physics analyses. AOD contains reconstructed

physics objects, trigger information and tracks, but removes much of the unnecessary

detail with respect to the ESD, such as tracking hits and calorimeter cells. The target

size of 100 kB per event is over tenfold reduced from RAW, though for analyses of

large datasets may still be too large.

Since specific analyses may require only a subset of the physics objects available, so

the ESD and AOD formats may be customised and reduced even further. Derived

Physics Data (DPD) is a customised subset of AOD containing only the information

required for a given analysis. This customisation means that different analyses will
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require different DPD datasets, though the benefit being a much reduced size, with

even the possibility of storing a full dataset on a local system. DPD can be reduced

even further via a few different methods:

• Skimming removes entire events that are not considered interesting for a given

analysis. For example, a Z → e+e− analysis may remove events which do not

contain two good electron candidates.

• Trimming removes containers of data from the whole dataset, which may not

be needed in the analysis. A tt̄ analysis may have no need to look at photons,

and so the photon containers would be trimmed from the file.

• Thinning removes objects from a container, where certain conditions are re-

quired of the object. This may be removal of electrons with pT < 15 GeV, or

jets with |η| > 2.5, for example.

• Slimming is the removal of specific parts of an object which are not needed,

such as electron track parameters, where other properties of the electron are

kept.

In order to reduce the size of the dataset used for this thesis, skimming is used to

remove events not containing at least one electron or muon candidate, trimming is

used to remove data such as photon containers, and slimming removes unnecessary

parts of the object containers, such as alternative Emiss
T calculation parameters.

3.8.1 Grid Computing

Even after the data have been reduced to more managable sizes, there may not be

sufficient resources for a user to run a full analysis on a local system. The LHC

computing grid [48] is a distributed computing system to allow a user to split an

analysis into subjobs to submit to computers around the world. This distributed
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system makes a large amount of computing power available to every user, as well as

alleviating the burdon of storing vast amounts of data locally.

The grid is split into ‘tiers’, with Tier-0 being the onsite CERN computing facility,

which provides the initial event reconstruction from the raw detector data. The data

are then sent to several Tier-1 sites which provide further reprocessing of the data

as well as a large amount of storage for the raw and reconstructed data. The data

are largely duplicated across Tier-1 sites to provide a backup system. Further data

storage is provided by Tier-2 sites, as well as a large amount of computing power

used for large scale MC simulations (described in section 6.3.1). Finally, Tier-3 refers

to the local resources, amounting to desktop computers and laptops, which users

can utilise to access the grid. Tier-3 is responsible for submission of analysis jobs to

grid resources.

Figure 3.19 shows a topological diagram of the distributed computing model in

ATLAS and the LHC.

For this thesis, the grid was mainly used in order to perform the previously men-

tioned data reduction techniques, allowing the required datasets to be downloaded

and analysed locally and offline.
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Figure 3.18: Cross section for various interesting processes versus collision energy, for
proton-(anti)proton collisions. The total interaction cross section is the top line. The
discontinuity in the lines corresponds to the transition from pp̄ to pp in the calculation of
the cross sections [47].

53



Figure 3.19: Overview of the distribution of resources in the grid computing model.
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Chapter 4
Atlantis - The ATLAS Event Display

An event display is software used to present a visual representation of collision data

recorded in a particle physics experiment. This allows for online monitoring of the

detector whilst it is running, as well as production of images for scientific papers

and press release. Atlantis is one of the event displays used at ATLAS, providing an

interactive visualisation of events within the detector, using several data oriented

projections. Figure 4.1 shows the interactive canvas which displays the events, as

well as the Graphical User Interface (GUI).

Atlantis is written in the Java language, separate from the integrated ATLAS soft-

ware framework (Athena), making the event display portable and cross platform

compatible. The event files used in Atlantis must first be produced from an ATLAS

data format using JiveXML, an Athena package which encodes the event as an XML

file, which can then be downloaded to a computer running Atlantis. The following

chapter will give a brief overview of Atlantis, as well as a description of development

of the software and outreach activities using Atlantis.
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4.1 Structure of Atlantis

4.1.1 JiveXML

JiveXML is a C++ software package within the Athena framework, to allow for

the production of events as XML files readable by Atlantis. JiveXML supports

production of events from both simulated events as well as recorded data, from

a variety of ATLAS data formats, including ESD and AOD. Since the ESD format

contains more information than AOD, users wishing to display as much information

as possible, including tracking hits and calorimeter cells, tend to run JiveXML

production on ESD. JiveXML can in addition be run during event reconstruction,

producing event XML files readable by Atlantis from events shortly after they are

read out from the detector.

A user may specify options within the Athena reconstruction job to process only

certain data types, which allow customisation of the JiveXML output for specific

needs. In this way, for example, secondary vertices from long lifetime particles may

be processed and displayed in Atlantis. Users wishing to display an event containing

only physics objects such as electrons, muons, jets, missing energy or reconstructed

tracks, can produce smaller XML files from the AOD format.

JiveXML is split into several components, each handling a specific part of the de-

tector, for example CaloJiveXML deals with the output of calorimeter related infor-

mation, and TrkJiveXML deals with the tracking information. Each component is

managed and maintained through a Subversion (SVN) repository, centrally located

at CERN.
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4.1.2 AtlantisJava

AtlantisJava, commonly referred to simply as Atlantis, is the primary graphical

component of the Event Display. Atlantis is able to run on any computer with

any operating system supporting a Java 1.6+ environment. Atlantis is able to

load XML files output by JiveXML and render the information over a variety of

projections. Projection here refers simply to the coordinate system, based on the

ATLAS coordinate system defined in section 3.1, used to display the data, including,

but not limited to:

• XY

• ρZ

• ηφ

• φρ

• φZ

• ηφ LegoPlot

An overview of these projections is shown in figure 4.2.

As well as the ability to present data in a range of projections, Atlantis allows

the user a degree of interaction with the event, allowing for manipulation of the

projections such as rotation or zooming, as well as extracting further information

from parts of the display through the pick tool. In addition to this, the display

can be customised in other ways, hiding unwanted data, highlighting important

data, or linking different data types together, for example, colouring inner detector

tracks based on their associated object. Much of this customisation can be saved

and reloaded at a later date through the use of configuration files, streamlining the

creation of customised ‘versions’ of Atlantis. This flexibility makes Atlantis ideal for
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Figure 4.2: A screen capture of Atlantis, showing a simulated H → ZZ → 4l event in six
different projections. Clockwise from top left: XY, ρZ, ηφ, φρ, φZ and the ηφ LegoPlot.

creating event displays for presentations, papers, press releases and media events,

as well as lending itself to the creation of interactive outreach activities.

4.2 Projections

This section describes some of the most commonly used projections in Atlantis.

4.2.1 XY

One of the primary projections in Atlantis, the XY projection shows data overlaid

on a transverse slice of ATLAS. This projection lends itself well to showing data in

the barrel region, as illustrated in figure 4.3. Only calorimeter cells and tracking

hits in the barrel region of each subdetector can be shown on this projection, as

59



Figure 4.3: The XY projection only shows the geometry of the detector in the barrel
region. Both raw data and reconstructed objects are shown here, including calorimeter
cells (yellow), tracks (blue), electrons (green) and muons (red). Reconstructed objects
may be shown for the full η range, or only up to a threshold in η.
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Figure 4.4: The ρZ (or RZ) projection represents a longitudinal slice through ATLAS, with
the transverse coordinate being replaced by ρ.

the geometry of the endcap is hidden. Reconstructed objects, such as tracks, jets,

electrons, or muons may be shown over the full η range. Displaying tracks over the

full η range can lead to ‘half tracks’, owing to the fact that forward tracks will leave

the tracking volume before reaching the maximum transverse extent of the tracker.

Missing transverse energy is also shown as a dashed line or arrow, with the thickness

of the line or length of the arrow dependent on the amount of missing energy.

4.2.2 ρZ

The second most commonly used projection is ρZ, or RZ (shown in figure 4.4). This

shows a pseudo-longitudinal slice along the z–axis, allowing both barrel and endcaps

to be shown.
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To allow a clearer display, rather than using simply yz or xz, ρ is defined as:

ρ =
√
x2 + y2. (4.1)

Take a track as an example. If the track is pointing exactly along the y–axis, then in

a xz projection, this track would show up as a point. Using the coordinate ρ instead

allows the track to show its full extent in the projection. In effect, this projection

combines both a side view and a top view in a single projection.

4.2.3 ηφ (V plot)

The ηφ projection displays data in ATLAS using the azimuthal coordinate, φ, and

pseudorapidity, η, in a regular two dimensional grid. Tracking hits, calorimeter cells,

reconstructed tracks, reconstructed physics objects and reconstructed vertices can

all be represented in this plot, as illustrated in figure 4.5.

This projection is often called the ‘V plot’ due to the way it displays tracks. At the

production point of the track, the point will have a φ value and an η value. The

value of φ will change as it traverses the tracking volume, owing to the magnetic

field. Without modification, this plot would display the track as a straight line at

constant η originating at the start of the track, and ending at the point the track

leaves the tracking volume. This has the benefit of distinguishing low and high pT

tracks, given that a low pT particle would bend more in the tracking volume, giving

a larger range of φ values at each point. The disadvantage of displaying tracks in

this way is that it is impossible to determine the direction of bending, and thus

charge. The V plot addresses this by applying a transformation to the η coordinate
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Figure 4.5: The ηφ projection shows data in ATLAS on a grid with the azimuthal coordi-
nate, φ, and pseudorapidity, η. Tracks are represented by the ‘V’ shaped lines, giving this
projection its nickname of the ‘V plot’. Calorimeter deposits are shown as yellow boxes,
with area proportional to the energy content, and reconstructed objects such as jets are
shown as circles.
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of the track:

η → η ± k(ρmax − ρ), (4.2)

where ρ is the radial distance of the point from the vertex, ρmax is the maximum

radial extent of the inner detector, and k is an arbitrary constant. This transforma-

tion will draw two points for each η point, giving the track a V shape, with the apex

of the V corresponding to the point at which the track exits the tracking volume,

with the V opening towards the origin of the track. The variable k controls the

width of the widest point of the V. High momentum tracks bend less in the tracking

volume, leading to a short V in this projection, where a low momentum track would

make a more elongated V. In addition, the charge of the particle determines which

direction the V is displayed.

This transformation is applied with η measured with respect to the primary vertex,

such that a track originating from the primary vertex would have a constant η, while

a track from a secondary vertex would have varying η, making it look like a distorted

V in this projection. This gives the ability to distinguish tracks from primary and

secondary vertices. The same transformation is also applied to hits in the tracker.

4.2.4 Lego Plot

The LegoPlot (shown in figures 4.6 and 4.7) uses the same coordinates at the V plot,

though it is designed for displaying calorimeter data, while the V plot works better

for displaying tracks. Calorimeter activity is represented in the LegoPlot as yellow

towers, with the height of the tower depending on the transverse energy deposited

in a given ∆η ×∆φ = 0.05× 0.05 region of the calorimeter.

In addition to calorimeter cells, reconstructed objects may be represented in the

LegoPlot as towers centred on their η and φ position, with height again determined
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Figure 4.6: The LegoPlot uses the same ηφ coordinates as the V-plot, though it does not
show tracking information, instead focussing on a clearer display of calorimeter activity.
The LegoPlot is segmented in η and φ, and any energy in calorimeter cells falling within
a single segment contributes to the height of the calorimeter tower.
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Figure 4.7: The LegoPlot, in addition to showing calorimeter activity, is able to give
an overview of event activity by showing AOD objects. The transverse energy of the
object determines the size of the tower. Here, green towers represent electrons, red towers
represent muons, and transparent grey towers represent jets.
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by the transverse energy of the object.

Missing transverse energy, by definition, only has a φ direction, and as such is

displayed on the lego plot as a dashed line at constant φ, over the full η range. The

magnitude of the Emiss
T is shown in a summary box to the top right of the LegoPlot.

4.3 Interaction with Atlantis

Atlantis has the capability to not only display events, but to allow a degree of

interaction with the events. The following section describes some of the ways that

Atlantis allows a user to further scrutinise an event using the available interactions.

Each of the interactions has a corresponding icon, allowing it to be selected from

the GUI.

4.3.1 Zoom/Move/Rotate (ZMR)

The ZMR, or Zoom Move and Rotate interaction, allows a user to move the display

within a given projection, zoom in to a specific region, or rotate the display logically

given the projection. For example, the XY projection rotates intuitively around the

z–axis, but the ρZ projection is slightly more complicated.

The ρZ coordinate system projects the magnitude of the tracks onto a pseudo-

longitudinal plane slice of the detector (with ρ2 = x2 +y2), with a split at fixed φsplit

along the centre. Objects in the upper half of the detector (defined by φsplit) are

projected upwards, and objects in the lower half downwards. The rotate tool allows

the user to alter the φsplit value.
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4.3.2 Rubberband

The Rubberband tool allows for batch selection of objects in order to create a ‘List’

of objects, which is useful for categorisation and colouring, or to zoom into the

selected region. In addition to these functions, the Rubberband tool can print a

‘summary’ of the selected objects, which includes an invariant mass calculation for

all of the selected objects.

4.3.3 Pick

The Pick tool allows a user to select individual objects, accompanied by information

pertaining to that object printed in the output window. For example, picking a track

will show the η, φ, pT, number of hits from each tracking layer, etc. Picking a jet

shows the measured energy and transverse energy, as well as the η and φ directions.

Additional utilities of the Pick tool are facilitated through keyboard shortcuts. An

example is the invariant mass calculation, accessed with the keyboard shortcut ‘M’.

Clicking a track followed by another, and potentially more tracks, while holding

down the ‘M’ key calculates the invariant mass of the selected system, with the

assumption of a pion mass for each track. This calculation was extended for use

with an outreach exercise to allow for calculation of invariant mass with respect to

a secondary vertex (requiring a recalculation of track parameters), and assuming

different masses for different possible decay modes.
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4.3.4 Fisheye

The Fisheye tool works in a similar manner to Zoom, but instead of a simple zoom,

Fisheye transforms the radial coordinate of the display by

ρ→ 1 + cfρmax

1 + cfρ
ρ, (4.3)

where cf is a constant determining the extent of the Fisheye transformation and

ρmax is defined as the maximum radial size of the detector.

Fisheye allows a user to keep a full picture of the event, while focussing more on the

inner regions of the detector.

4.4 Atlantis Development

Atlantis is a constantly developing software package, with several UK and CERN

based developers working on both bug fixing and maintenance as well as adding

new features, or removing obsolete code. Atlantis is managed through an SVN

repository, with frequently frozen (tagged) snapshots of the codebase. This allows

development to continue on experimental features, whilst maintaining a stable ver-

sion for use in the ATLAS control room as the online event display, for subdetector

commissioning and debugging, or as an outreach tool. Described in this section are

some of the recent features added to Atlantis by the author.

4.4.1 Event Properties Dialogue

A dialogue box showing an overview of every item available to display, populated by

the contents of the XML event file, has been extended to show the items remaining

after the selected cuts in the currently active display window have been applied.
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Figure 4.8: ATLAS live is a publicly available webpage, showing events soon after they are
recorded in the detector. This event was recorded during the early 2013 proton-lead run.

This gives a quantitative idea of the effect of applying certain cuts on an event;

applying a cut to a group of objects will remove any objects which do not pass the

cut from this list.

4.4.2 Event Information Projection and Overlay

The EventInfo ‘projection’ is a pseudo-projection added to aid in the production of

public event displays, simply displaying the run and event number, the time and

date, and the ATLAS logo. This projection is also used in the public live event display

webpage, ATLAS live∗, which displays events soon after they are recorded (see figure

4.8). The EventInfo projection was also extended to be more flexible in terms of the

positioning of the logo, as well as relaxing the restriction that a space potentially

available to show another physics oriented projection be taken up by the logo.

The ‘Overlay’ is a utility added in Atlantis to allow flexible position of the ATLAS

∗http://atlas-live.cern.ch/
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Figure 4.9: A simulated H → ZZ → 4l event shown in Atlantis with the ATLAS logo
display in the Overlay. The ATLAS logo is configurable in both position and size.
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logo and run/event information, without having to take up a projection space. A

‘GlassPane’, from Java’s Swing library, was added over the event display with the

ability to float an image containing the ATLAS logo, and other information available

in the EventInfo projection. The horizontal and vertical position is chosen freely as a

fraction of the event display proportions, as well as the size being user configurable.

Figure 4.9 shows an event display with a logo displayed in the Overlay. The Overlay

was designed such that other information or images may be added and drawn over

the event display in the future.

4.4.3 Missing ET Display

Missing transverse energy is a derived quantity based on activity in the detector. The

initial state of a parton-parton collision in ATLAS has zero transverse momentum,

though its momentum is not well defined in the longitudinal direction. If a neutrino

is produced in an event, it will escape ATLAS without detection. Because of this,

the sum of transverse momentum of the event will be non-zero. Missing transverse

energy is the negative of the vector sum of transverse momentum:

Emiss
T = −

∑
i

~pT
i (4.4)

In Atlantis this is represented by a dashed line, with thickness dependent on the

amount of missing transverse energy, or as an arrow (as shown in figure 4.10), with

length depending on the amount of missing energy. Missing transverse energy is also

displayable in several other projections which represent the φ direction, including

ηφ, the LegoPlot, and φR.
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Figure 4.10: Missing transverse energy represented in Atlantis. The arrow pointing to the
bottom of the display represents Emiss

T = 43.8 GeV. Other features of Atlantis are also
shown in this display, including a b-tagged jet, shown as a grey cone leading to a blue box
on the outside of the calorimeter. An electron (green) and muon (red) are also shown.
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Figure 4.11: A simulated tt̄ (dimuon) event in Atlantis with three jets shown as shaded
cones. Also shown are two muon tracks (orange lines), with one muon being reconstructed
within the barrel region (red box). None of the jets are b-tagged.
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4.4.4 Jet Display

Jets displayed in Atlantis have undergone several incarnations, ranging from a small

box in the ηφ direction of the jet and located on the outside of the detector, to a

rough outline of the conical shape of the jet. More recently, the jet drawing method

has been modified to allow transparent shaded cones, scaling in length with the jet

energy, and in angular extent based on the jet cone size, for example, Anti–kT jets

(defined later in section 6.1.3) with a cone size of ∆R = 0.4 are drawn with a smaller

arc than those with cone size of ∆R = 0.6. Figure 4.11 shows jets represented as

transparent cones in Atlantis.

4.5 MINERVA

Masterclass INvolving Event Recognition Visualised with Atlantis (MINERVA) is

an outreach tool, used worldwide by schools and universities to inform students

and teachers about the science of the LHC, using Atlantis as a tool to facilitate

learning†. MINERVA uses a customised configuration of Atlantis, removing much of

the unnecessary detail. Figure 4.12 shows two examples of how MINERVA displays

ATLAS events.

One basic exercise MINERVA is used for involves simple event categorisation, given a

sample of mixed W and Z boson decays, with a small amount of dijet background

events included. A further extension to this exercise may be introduced by requesting

the student measure the momentum of tracks resulting from the identified Z boson

decays, and calculating the invariant mass of the Z using

M2 = (
∑

E)2 − (
∑

p)2. (4.5)

†http://atlas-minerva.web.cern.ch/atlas-minerva/
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(a) (b)

Figure 4.12: An example of how MINERVA displays events from ATLAS. a) A Z boson
decaying to two electrons. b) A W boson decaying to a muon and muon neutrino.

Figure 4.13: An example Z boson mass distribution representative of what may be ob-
tained using the MINERVA outreach tool. The application used to plot the distribution and
perform the fit is a custom Java applet written specifically by the author for MINERVA.
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With a large enough sample, which may be distributed over several groups of stu-

dents, enough Z mass measurements may be made to allow a fit to be performed, in

order to estimate the average Z mass and width. Figure 4.13 shows a screenshot of

an custom Java application, written specifically for the MINERVA tool, used to plot

and fit a Z mass distribution. The fit is performed with a Breit-Wigner function to

best model the resonance shape of the Z mass distribution.

Also in development for use with MINERVA is an exercise in which students are

instructed to identify neutral particle decays, such as K0 and Λ/Λ̄, as well as γ con-

versions. Atlantis was modified to calculate an invariant mass for each of the possible

neutral decays by recalculating the track parameters with respect to a selected sec-

ondary vertex, and making assumptions for the mass of each decay product. The

result is three mass calculations, allowing for the neutral decay to be classified, and

for the lifetime of the decaying particle to be estimated, based on its distance from

the primary vertex.

4.6 Summary

Atlantis is a constantly developing software package used by many people both

inside the ATLAS collaboration and outside. It is used to create event displays for

public release, as well as to demonstrate typical events within an analysis for a

paper or conference talk. The ATLAS control room uses Atlantis to monitor events

happening in the detector in almost real time. Schools and universities also use

Atlantis, packaged in a customised form as MINERVA, for outreach and teaching

activities.
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Chapter 5
The Top quark

5.1 Introduction

In 1964, Cronin, Fitch et al. observed CP violation in decays of the neutral K

meson [49], ultimately spawning a 30 year quest for the top quark. At the time of

the first observation of CP violation, only three quarks had been discovered. The

fourth quark, charm, was discovered independently by two groups at Stanford and

Brookhaven ten years later, in 1974 [50,51]. Prior to this discovery, Kobayashi and

Maskawa argued the case for the six quark model a year earlier in 1973 [52], which

would fit CP violating weak interactions naturally into the quark model.

Given two weak isospin doublets, u

d′

 c

s′

 , (5.1)

a given up-type quark (u or c) weakly couples to the corresponding down type state
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(d′ or s′), which corresponds to a superposition of down-type quarks as follows,

 d′

s′

 =

 Vud Vus

Vcd Vcs

 d

s

 . (5.2)

The left hand side of equation 5.2 contains the weak eigenstates, i.e., the states

partaking in weak interactions. The right hand side doublet contains the mass

eigenstates, which correspond to the particles we observe. The N × N complex

mixing matrix, Vij, must be unitary for N families of quarks. An N × N matrix

then introduces N2 parameters, of which 2N − 1 can be absorbed into the 2N

quark fields via phase transformations. Since the matrix remains invariant under

a common transformation on all quarks, one phase remains. This leaves behind,

N2−2N+1 = (N−1)2 parameters, of which N(N−1)
2

parameters are rotation angles

and (N−1)(N−2)
2

parameters are complex phases. For our two generation model, this

leaves one parameter, a simple mixing angle and no complex phase. If we introduce

a third weak isospin doublet, corresponding to the third generation of quarks, t

b′

 , (5.3)

then the mixing matrix becomes 3× 3 and we are forced to introduce an irreducible

complex phase. Following the same counting of parameters as above, we are left

with three angles and one complex phase. Having a complex phase in the matrix

parameters can allow CP violation [53]. The three generation model thus provides

an explanation for the CP violation observation, though increasing the number of

parameters (and quarks) in the model.
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The weak isospin states are then defined as,


d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




d

s

b

 . (5.4)

One parameterisation of the matrix, Vij, known as the Cabbibo-Kobayashi-Maskawa

(CKM) matrix, is as such,


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (5.5)

where, for example, c12 and s12 represent cos θ12 and sin θ12, θ12 is a mixing angle

and δ is a complex phase. If δ is non zero, the complex phase remains and CP

violation is allowed.

In 1975, the τ lepton was discovered [54] which lent credence to the three generation

theory of matter, on aesthetic principles; if there are three generations of leptons,

then three generations of quarks completes the symmetry. This argument became

a successful prediction of the three generation model of quarks when, in 1977 at

Fermilab, the Upsilon was discovered; a bound state of bb̄ [55]. The three generation

theory was then confirmed in 1995 with the discovery of the top quark in experiments

at the Tevatron [56,57]. The current best fit results for the magnitudes of the CKM

matrix elements, from Ref. [58], are,


0.974 0.225 0.003

0.225 0.973 0.041

0.009 0.040 0.999

 . (5.6)
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b

Figure 5.1: A tt̄ pair can decay to several final states, which are categorised. For example,
a semileptonic decay involves one top quark decaying to produce a charged lepton while
the other decays to produce hadrons. A dileptonic decay involves both top quarks decaying
to produce a charged lepton.

5.2 Phenomenology

The CKM matrix elements are directly related to the probability of a given up-

type quark weakly interacting with the corresponding down-type quark. If the

Standard Model contains only three generations of quarks, then the 3 × 3 CKM

matrix contains all of the probabilities of weak quark mixing, and assuming there

are no exotic decay mechanisms, then the CKM matrix must be unitary. In other

words, |Vud|2 + |Vus|2 + |Vub|2 = 1, for each up type quark, and V −1 = V †.

The element |Vtb|2 ≈ 1 implies that the top quark almost exclusively decays to a

bottom quark via emission of a W boson.

Top quarks are predominantly produced in pairs in proton-proton collisions at the
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LHC through gluon–gluon fusion, but at lower energies, quark–antiquark annihila-

tion is a large contributor. Each top quark produced then almost always decays to a

bottom quark through the weak interaction. The W bosons can then decay lepton-

ically to eνe, µνµ, τντ or hadronically to ud̄, cs̄, allowing tt̄ decays to be categorised

into dileptonic (two charged leptons in the final state), semileptonic (one charged

lepton in the final state) or fully hadronic (zero charged leptons in the final state),

depending on the decay products of the W boson. Figure 5.1 shows a Feynman

diagram of a semileptonic tt̄ decay.

At LO in hadron colliders, pairs of top quarks are produced by quark-antiquark

or gluon-gluon fusion. The production mechanisms are dependent on the centre of

mass energy of the system. For example, at the LHC with
√
s = 7 TeV, the dominant

production mechanism of tt̄ pairs is through gluon-gluon fusion. The cross section

of tt̄ production is given by [59],

σpp→tt̄X(s,m2
t ) =

∑
i,j=q,q̄,g

fi(µ
2
f )⊗ fj(µ2

f )⊗ σ̂(m2
t , µ

2
f , µ

2
r), (5.7)

where s is the centre of mass energy squared, mt is the top quark mass, fi,j(µ
2
f )

are the proton PDFs∗, σ̂(s,m2
t ) is the partonic cross section. µ2

f is the factorisation

scale, which is used as a cutoff between the perturbative and non-perturbative parts

of the calculation, and µ2
r is the renormalisation scale, which allows for divergences

in NLO calculations to be absorbed.

5.2.1 Importance of the Top Quark

The LHC is a top factory. The cross-section for tt̄ production at
√
s = 7 TeV is

around 170 pb. At
√
s = 7 TeV — with a peak luminosity in 2011 of 7.73×1033 cm−2 s−1

∗The proton PDF describes the fraction of the incoming protons momentum carried by each of
the constituent quarks and gluons.
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Figure 5.2: The mass of the top quark vs the mass of the W boson. The diagonal bands
show the allowed range of Higgs masses for a given set of top and W boson masses. The
green oval shows the current world best measurements of the top mass (horizontally) and
W boson mass (vertically), constraining the Higgs mass to be less than 152 GeV, to 68%
confidence [61].

and a total integrated luminosity of around 4.7fb−1 — the number of tt̄ pairs pro-

duced in ATLAS in 2011 is close to 800,000. As the top quark decays to a W boson

and a b quark, the branching ratio of the W defines the possible final states of the

decay. For tt̄ pairs, roughly 1/9th of the time, the final state will contain two charged

leptons and two neutrinos, around 4/9th of the time, the final state will contain a

charged lepton, a neutrino and two extra quarks, while the rest of the time the final

state is made up of four extra quarks.

The top quark, though already discovered and studied thoroughly at the Tevatron,

is of great importance to LHC physics. Its place in the Standard Model as the most

massive fermion means it has a strong coupling to the Higgs boson [60]. NLO calcu-

lations of the W boson mass contain corrections proportional to the Higgs and top

masses, meaning that accurate measurements at the LHC of the W boson and top

mass can impose constraints on the Higgs mass (see Figure 5.2). As of February

2013, the measured Higgs mass from ATLAS and CMS is around 125 GeV [12, 13],

which is consistent with theoretical predictions, given the current world best W and

top mass measurements [61].
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5.3 tt̄ Spin Correlation

The study of tt̄ pairs allows a further test of the Standard Model by studying the

spins of the quarks. The large width of the top quark leads to it having a very short

lifetime; at least an order of magnitude smaller than the timescale of the strong in-

teraction [62], meaning the top quark decays before its spin can be depolarised. The

spin and polarisation of the top quark then directly affects the angular distributions

of the decay products.

For spin 1
2

fermions produced in pairs at a hadron collider, the production mecha-

nisms at LO† can be categorised into:

• qq̄

• Unlike helicity gg

• Like helicity gg

qq

t̄

t

θ

Figure 5.3: qq̄ → tt̄ in the rest frame of the tt̄ system. The angle θ is defined as the
opening angle between one of the outgoing top quarks and the incoming quark.

Ref. [63] presents an overview of the spin structure of these production mechanisms

in terms of the scattering angle, θ, of the top quarks from the incoming beam, and

†At Next to Leading Order, a small amount of the production occurs through qg
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t̄

~m

qq

t
ψ

i

θi

Figure 5.4: The top quark spin vector, ~m in the top quark’s rest frame, with angle ψ from
the anti-top.

b-quark W+ l+ d̄-quark or s̄-quark u-quark or c-quark

αi (LO) -0.41 0.41 1 1 -0.31
αi (NLO) -0.39 0.39 0.998 0.93 -0.31

Table 5.1: Spin analysing power for the top quark decay products calculated at LO and
NLO. In the case of the anti-top, a negative coefficient is introduced for each value. For
example, the charged lepton and the b-quark from the anti-top decay would have α = −1
and α = 0.41 at LO respectively.

ψ, the direction of the top quark spin vector, measured from the anti-top direction

in the top quark rest frame. These angles are illustrated in figures 5.4 and 5.3.

Careful selection of the angle ψ can allow enhancements of the correlation between

the spins of the tt̄ pair, described in more detail in section 5.3.1.

The angular distribution of the top quarks decay products is described in terms of

the direction of the spin vector [64] by

1

N

dN

d cos θi
=

1

2
[1 + αi cos θi], (5.8)

where θi is the angle between decay product i, and the spin vector in the top quark

rest frame. αi is a coefficient determining the influence of the parent quarks spin on

the angular distribution of the decay product, and is given in table 5.1.
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Given that the angular distributions of the top decay products are influenced by

the spin of the top, the spin correlation of the tt̄ system can be probed by angular

correlations between the decay products of both tops [63],

1

N

d2N

d cos θid cos θj
=

1

4
[1 + καiαj cos θi cos θj] (5.9)

with
κ

4
= A =

N↑↑ +N↓↓ −N↑↓ −N↓↑
N↑↑ +N↓↓ +N↑↓ +N↓↑

(5.10)

The polarisation of the top can also influence this distribution, but since the elec-

troweak contribution to the tt̄ production is very small relative to the QCD produc-

tion mechanisms, the polarisation is considered negligible [65].

In order to extract A, the spin vector, ~m(~n), from which to measure the angle θi(j)

must be defined.

5.3.1 Spin Quantisation Bases

The spin information of the top quark can be accessed directly by measuring the

angular distributions of its decay products with respect to a spin vector, or quan-

tisation basis. While all of the decay products are influenced by the spin of the

parent top quark, the charged leptons and down type quarks are influenced more

strongly than, for example, the up type quarks. To define a basis, two vectors are

constructed; vector ~m is used to measure the angle of the top quark decay products,

and vector ~n to measure the angle of the anti-top quark decay products. The choice

of basis affects the amount of observed spin correlation and, for some processes, it is

possible to define a basis such that the spins are fully correlated (or anti-correlated).

However, for a hadron collider experiment, no single process dominates the tt̄ pro-

duction, due to the quark and gluon content of the interacting hadrons. This makes
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it impossible to define a basis where the spin correlation can be observed to 100%

level, though knowledge of the dominant production mechanisms allows for the basis

choice to be optimised.

Beamline Basis

The simplest basis to define is the beamline basis, with the vector defined along the

direction of flight of one of the incoming hadrons

~m = ~n = ~p (5.11)

where ~p is the direction of one of the incoming partons in the lab frame. To simplify

the construction of the beamline basis, ~p is chosen as the incoming beam direction,

which is a close approximation to the direction of flight of the incoming parton. tt̄

pairs at the LHC are produced predominantly by the process gg → tt̄ far above the tt̄

production threshold and as such, the beamline basis, which tends to be preferable

for low β(= v/c) top quark pairs, is unsuitable. Conversely, at the Tevatron, where

tt̄ pairs are mostly produced by qq̄ → tt̄ and close to threshold, the beamline basis

is one of the best possible choices of spin quantisation basis.

Helicity Basis

The helicity basis is defined as

~m = −~kt̄ = −~n (5.12)

where ~kt̄ is the recoil direction of the anti-top quark in the top quark rest frame (see

figure 5.5. This basis performs well for high β top quark pairs, making it a good

choice at the LHC.

87



t̄
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t ψ
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Figure 5.5: The top quark spin vector, ~m in the top quark’s rest frame, with angle ψ from
the anti-top.

As β → 1 the helicity basis allows a 100% description of Standard Model spin

correlation for top quark pairs produced by quark-antiquark annihilation and unlike

helicity gluon fusion. In the case of like helicity gluon fusion, the helicity basis

describes the spin correlation for all β [63]. At the LHC with
√
s = 7 TeV, where

tt̄ pairs are produced by a mixture of these processes, the helicity basis allows

observation of spin correlation around the 31% level [17].

Off Diagonal Basis

The off diagonal basis is chosen to optimise the strength of the spin correlation in

the qq̄ → tt̄ process. Ref. [64] showed that, in e+e− → tt̄ production, a spin basis

can be chosen such that the amplitude for like spin tt̄ production vanishes, leaving

100% unlike spin correlation (A = −1). This can be extended for use in qq̄ → tt̄

processes [66].

To construct the off diagonal basis, consider a vector in the top rest frame, with

angle ψ from the anti-top (Figure 5.4).
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The off diagonal basis is defined by

tanψ =
β2 sin θ cos θ

1− β2 sin2 θ
(5.13)

where θ is the opening angle between the top quark and the incoming quarks (Fig-

ure 5.3).

The vector defined by ψ (as illustrated in figure 5.4), can alternatively be written,

~m =
−~p+ (1− γ)(~p · ~k)~k√

1− (~p · ~k)2(1− γ2)
(5.14)

where ~k is the direction of flight of the top quark in the rest frame of the tt̄ system

and ~p is the direction of flight of one of the incoming hadrons.

For qq̄ production, at low β, γ → 1, ~m = −~p and the off diagonal basis becomes

the beamline basis. As β → 1, the off diagonal basis becomes the helicity basis, and

describes qq̄ → tt̄ events high above threshold [63]. At the Tevatron, tt̄ production

is dominated by the qq̄ process, meaning the off diagonal basis is the optimal choice

for studying the spin correlation. A high proportion of tt̄ pairs are produced by

gluon-gluon fusion at the LHC, so these simplifications at high and low β do not

hold and the off diagonal basis becomes a suboptimal choice [67].

LHC Optimal (Maximal) Basis

In choosing a basis to maximise the observed spin correlation in gluon-gluon fusion,

the basis choice can reduce either the ↑↑ + ↓↓ contribution or the ↑↓ + ↓↑ contribu-

tion to zero, for either unlike helicity, or like helicity gluon fusion, respectively [63].

Due to the mixture of like and unlike helicity gluon fusion in tt̄ production at the

LHC, there exists no basis to describe exactly the spin correlation. The choice of

basis can, however, be optimised. In Ref. [63], it is shown that there exist maxima
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Figure 5.6: The strength of tt̄ spin correlation for four bases as a function of collision
energy, calculated with MC@NLO.

for both the like and unlike helicity gluon contributions, when

tan 2ψ =
2γ−1 sin3 θ cos θ

sin2 θ cos2 θ − γ−2 sin4 θ − γ−2
. (5.15)

This then yields a result for ψlike and ψunlike which optimise the basis choice for

either like or unlike helicity gluon–gluon fusion. Ref. [63] again shows that when

βγ sin θ < 1, ψlike should be chosen, and when βγ sin θ > 1, ψunlike should be chosen.
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Current status

Figure 5.6 illustrates the energy dependence of these four bases. Clearly the basis

choice is dependent on the energy of the collider experiment, suggesting the beam

line or off-diagonal bases as optimal for the Tevatron, and helicity or optimal bases

for the LHC.

The Collider Detector at Fermilab (CDF) experiment performed a study of spin cor-

relation in tt̄ pairs decaying to a single lepton at
√
s = 1.96 TeV using both the

beamline basis and the helicity basis [68] and measured a helicity basis spin corre-

lation parameter A = 0.48 ± 0.48(stat) ± 0.22(syst), consistent with the Standard

Model prediction of A = 0.35 at the Tevatron. The DØ collaboration also per-

formed a study of spin correlation, this time with dileptonically decaying tt̄ pairs,

using the beamline basis [69], finding no significant deviation from the Standard

Model hypothesis.

At
√
s = 7 TeV, the ATLAS experiment published a study of spin correlation with

2.1fb−1 of data, where the zero spin correlation model was excluded to 5.1σ [70];

the first observation of non zero spin correlation. In addition the CMS experiment

performed a study of spin correlation with 5.0fb−1 of data, finding results consistent

with the Standard Model prediction [71].

The Standard Model expectation for the spin correlation parameter in the helicity

basis, at
√
s = 7 TeV is A = 0.31 [17].

5.3.2 Observables

Clearly, in the dilepton channel, the choice of analysers with which to access the spin

correlation is simple; both charged leptons carry close to 100% of the information

from the parent top quarks (as shown in table 5.1). For the semi-leptonic channel,
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Figure 5.7: The cos θi cos θj distribution for (left) the helicity basis and (right) the LHC

optimised basis for tt̄ events decaying dileptonically. The distributions shown are at parton
level, generated with MC@NLO at

√
s = 7 TeV, without cuts and constructed using the

two charged leptons as spin analysers.

the charged lepton and the down-type quark are the most effective analysers. Ex-

perimentally it is impossible to distinguish a jet originating from an up-type quark

from that of a down-type quark, though an interesting property of the weak decay

can provide a handle to enhance the selection of down-type quarks. This procedure

is discussed further in section 6.6.

From equation 5.9, it is clear that the distribution cos θi cos θj contains information

on the spin correlation of the tt̄ system, where decay products i and j are the chosen

spin analysers. In order to extract Aαiαj from equation 5.9, the unbiased estimator

Aαiαj = 9〈cos θi cos θj〉, as described in Ref. [72], can be used to extract directly

a value for A. In the dilepton channel, using both charged leptons as the spin

analysers, this simplifies to A = −9〈cos θi cos θj〉, where αl+ = 1 and αl− = −1.

This corresponds to simply taking the mean of the distribution in figure 5.7 and

multiplying by −9. In figure 5.7, the Standard Model plot has a mean of −0.0334,

which corresponds to Ahelicity = 0.301.
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Figure 5.8: Like spin tops will tend to produce leptons with their momentum parallel,
whereas unlike spin tops tend to produce back to back leptons. The down-type quark in
a weak decay can be viewed as analogous to the charged leptons.

However, in order to perform a spin correlation study directly, utilising the afore-

mentioned bases, it is necessary to fully reconstruct the event. At the LHC, the high

pileup in events can complicate this procedure. Instead arguments can be made in

favour of observables requiring minimal reconstruction in order to indirectly observe

the spin correlation.

To illustrate this, figure 5.8 shows the two possibilities for tt̄ spin configuration; like

and unlike. In the limit where β → 1 for the daughter particles with respect to

the tt̄ frame, helicity describes the spin direction. For like spin tops, the preferred

analysers will tend to decay with their momenta in the same direction. In figure
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5.8 electrons are considered to illustrate this. For unlike spin tt̄ pairs, the electrons

tend to be produced back to back. Since the tt̄ system only experiences a significant

boost in the z direction, the φ of the decay products is largely unchanged. This

suggests that the difference between the φ of the decay products,∆φ, is sensitive to

the presence of spin correlation in the tt̄ system. This argument is also presented

more rigorously in Ref. [63].

For A = 0, the electron momenta are produced equally parallel and anti-parallel. If

A > 0, figure 5.8 suggests an enhancement as ∆φ → 0, due to more production of

like spin tt̄ pairs, than unlike spin. For A < 0, the converse is true; more unlike spin

tt̄ pairs are produced, suggesting an enhancement as ∆φ→ π.

Figure 5.9 shows the parton level distribution for ∆φ in the lab frame for dilepton

events, showing the enhancement of the Standard Model case where A > 0.

The quantity ∆φ presents an opportunity to measure the extent of the spin correla-

tion in the tt̄ system without requiring a boosted frame. This immediately removes

the requirement that the tt̄ system be fully reconstructed, which is of significant

benefit in the dilepton decay mode, where the presence of two neutrinos in the final

state makes reconstruction a difficult process. The single lepton decay mode still

presents the problem that one of the desired analysing particles is the down-type

quark originating from the W boson decay.

In the following chapters, an analysis of 4.7 fb−1 of data taken by the ATLAS experi-

ment, with a centre of mass energy of 7 TeV, recorded in 2011 is presented, using the

lab frame variable ∆φ. Since ∆φ is constructed in the lab frame, none of the above

bases is used. Therefore, instead of using A as the spin correlation parameter in

the extraction of the spin correlation, the value fSM is used, where in the Standard

Model case, fSM = 1 and for the zero spin correlation case, fSM = 0. This can be

converted back to the spin correlation parameter A by multiplying by the relevant

Standard Model value. For example, a measurement of fSM = 1 would correspond

to a value of Ahelicity = 0.31.
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Figure 5.9: The ∆φ distribution in the lab frame for tt̄ events decaying dileptonically.
The distributions shown are at parton level, generated with MC@NLO at

√
s = 7 TeV,

without cuts and constructed using the two charged leptons as spin analysers.

In the Standard Model, it would be expected that the measured value of fSM would

be 1, though there may be cases beyond the Standard Model which can alter this

value. If a charged Higgs boson were to replace the W boson in the decay of the

top, the weak coupling to left (right) handed (anti-)fermions only is lost, meaning

the momenta of the preferred decay products no longer tends to parallel for like spin

tt̄ pairs (as shown in figure 5.8). This may tend to reduce the observed amount of

spin correlation below the Standard Model expectation, and would be visible in the

analysis presented in the following chapters.
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Chapter 6
Selecting and reconstructing tt̄ events

6.1 Object Definition

This section defines the reconstructed objects used for event selection and analysis.

Raw hits data from ATLAS are read out from the detector and processed to form

clusters of calorimeter energy deposits and to reconstruct tracks from tracking hits.

These are then further reconstructed to create electron, jet or muon objects.

6.1.1 Electrons

An electron, being a charged particle, will ionise the material in the tracking volume,

before depositing its energy in the electromagnetic calorimeter. This gives a distinct

signature for the electron of a charged track with activity in the EM calorimeter.

For this analysis, an electron is defined as a reconstructed object with a single

track, where the track has at least one pixel hit, seven silicon hits and a difference

in pseudorapidity, ∆η, from the calorimeter cluster of less than 0.015 in the case of

‘Loose’ electrons, and 0.005 for ‘Medium’ and ‘Tight’ electrons. In addition, cuts
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on the shower shape in the calorimeter are imposed, with increasingly strict cuts

moving from Loose to Medium to Tight electrons. Medium and Tight electrons

also have stricter requirements on inner detector activity. Loose, Medium and Tight

electrons are required to have at least one pixel hit, and at least seven SCT hits. The

Medium classification additionally requires at least one b-layer hit within |η| < 2.01,

while Tight requires a b-layer hit over all η, and adds cuts to reduce electrons from

photon conversions. Medium cuts offer an efficiency of 85% for electrons from Z-

boson decays, where Tight cuts give a lower efficiency of 78%, but with less ‘fake’

electron contamination.

The reconstructed electron is required to be isolated; calorimeter activity in a cone

of ∆R < 0.2∗ must not exceed a specified amount (dependent on the energy of the

incident electron), where the electron shower itself is excluded by subtracting the

calorimeter activity in a cone of ∆R < 0.05. The allowed calorimeter activity is

calibrated to achieve a 90% working efficiency for accepting electrons, against ‘fake’

electrons from misreconstructed jets. In addition, the sum of pT of tracks within a

cone of ∆R < 0.3 must not exceed a threshold, again dependent on the pT of the

incident electron.

Since an electron deposits energy in the calorimeter, jet finding algorithms (described

in section 6.1.3) will reconstruct this calorimeter activity as a jet. Clearly this ‘jet’

is a duplicate object, and should not be treated as a jet in the analysis. In order to

remove it from the object pool, an overlap removal algorithm is applied, in which any

reconstructed jet within ∆R < 0.2 of an electron is removed. The jets considered

in the overlap removal must satisfy the requirements outlined in section 6.1.3. In

addition, any electrons within ∆R < 0.4 of any remaining, selected jet are removed.

Finally, electrons are required to have transverse energy† (ET) greater than 25 GeV

and |η| < 2.47 with electrons falling into the calorimeter crack region (1.37 < |η| <
∗∆R =

√
∆φ2 + ∆η2

†Transverse energy is defined as Ecluster/ cosh ηtrack
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1.52) removed.

6.1.2 Muons

Muons are defined as reconstructed objects with a track both in the inner detector

and muon spectrometer. A looser definition of a muon requires only a track in the

muon spectrometer, extrapolated back to the vertex. Each muon is required to fall

within |η| < 2.5, in order to ensure a single muon will have both an inner detector

track and a muon spectrometer track, with transverse momentum greater than 20

GeV, and the additional requirement of having at least two pixel hits and six SCT

hits, with quality requirements on the TRT hits.

Similarly to the isolation requirements for the electron, muons are required to have

calorimeter activity within a cone of ∆R < 0.2 less than 4 GeV and the summed

momentum in the tracker within a cone of ∆R < 0.3 to be less than 2.5 GeV.

Since a jet may contain heavy flavour quarks, which can decay to produce muons,

an isolation requirement on muons from jets is also imposed. Any muon within

∆R < 0.4 of a jet (as described in section 6.1.3) is removed.

Finally, pairs of muons considered consistent with a cosmic ray event - muon pairs

back to back (∆φ > 3.1) with a large displacement from the primary vertex - are

removed.

6.1.3 Jets

A single quark or gluon produced in an interaction, such as in figure 6.1, is required

to be confined ; that is, a particle possessing colour charge is required to form a

bound state which is colour neutral. In order for this to be satisfied, pairs of quarks

and gluons are produced, which may then form a bound state with the initial quark,

98



W+

u

d̄

Figure 6.1: A W boson decays to an up quark and down anti-quark. The u and d̄ quarks
are observed only as jets, streams of particles created by the strong force, produced in the
momentum direction of the initial quark.

while others may remain unconfined. More pairs of particles are then produced and

the process repeats until the net colour charge is neutral. The result of this process

is a jet of hadrons produced in the direction of the initial quark.

A jet is an object which attempts to reconstruct the original direction and momen-

tum of the initial parton, which is the object of interest for studying the hard scatter

process. To do this, a jet reconstruction algorithm is needed; in this analysis the

Anti–kt algorithm [73] is used.

In the Anti–kt algorithm, particles are clustered based on two distance measures,

dij = min(k2p
ti , k

2p
tj )

∆R2
ij

R2
cone

, (6.1)

diB = k2p
ti , (6.2)

where kti is the transverse momentum of particle i, and Rcone is the desired cone

radius of the jet. The parameter p is defined as −1 in the Anti–kt algorithm. If dij is

the smallest distance, then i and j are clustered together, and if diB is the smallest
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distance, i is said to be a jet, and removed from further iterations. This procedure

is repeated over all pairs of particles until no particles or clusters remain. The Anti–

kt algorithm is both infrared and collinear safe; for a given system, additional soft

radiation from gluons or the splitting of one particle into two collinear particles,

does not affect the resulting jets created.

Each jet must satisfy further quality conditions to be considered in the analysis.

Only jets with pT > 25 GeV are considered for the final analysis. For each electron

in the event, the closest jet, within ∆R < 0.2 is removed. If a jet with pT > 20 GeV,

associated with background calorimeter noise, is found the event is removed.

Jet Vertex Fraction

v1 v2

j1

j2

Figure 6.2: A visual representation of the JVF method. Jet j1 is composed entirely of
tracks originating from the vertex v1, while j2 is contaminated by a track from vertex v1,
making its JVF with respect to v2 less than 1.

Due to the large amount of extra interactions present in an event from pileup, an

extra cut is applied to discriminate jets from the hard scatter and from pileup. This

discrimination is achieved using the JVF, a quantity representing the probability

that a jet originated from a given vertex [74].
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The value of JVF for a given vertex, k, is given by,

JV F (jeti, vtxk) =

trk∑
l

pT(trkl, vtxk)

vtx∑
m

trk∑
n

pT(trkn, vtxm)

(6.3)

where the numerator is the sum of pT of all of the tracks in the jet which are

associated with vertex k, and the denominator is the sum of pT of all of the tracks

in the jet associated with any vertex.

Figure 6.2 provides a visual description of the method. Jets in this analysis are only

considered if the JVF with respect to the primary vertex is greater than 0.75.

B-Tagged Jets

Each jet is run through b-tagging algorithms to determine if the jet originates from

a b-quark. A jet containing a b-hadron would typically have a displaced vertex

due to the relatively long lifetime of b-hadrons (∼ 10−13 s). Therefore, looking at

parameters, such as the track impact parameters (d0, z0), within the jet can help

discriminate light flavour jets from heavy flavour jets. In addition, algorithms based

on MC simulation predictions using variables which provide some discrimination

between signal (b-jet MC) and background (light jet MC) are used. These variables

are combined using a neural net [75], resulting in a single variable (MV 1) providing

a large discrimination between b-jets and light flavour jets. This analysis uses a 70%

efficiency cut for selecting jets originating from b-quarks, which provides a rejection

of 99.3% of jets originating from light quarks.
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6.1.4 Missing Energy

Protons colliding in ATLAS have their momenta directed entirely in the z–direction.

In a proton-proton interaction, it is the constituent partons making up the protons

which interact, each of which carries a fraction of the momentum of the proton. This

momentum fraction is impossible to determine on an event by event basis, with the

result that the z boost of the event is unknown. However, the momentum of the

partons in the transverse plane is negligible, allowing conservation of momentum

to be imposed in the x and y directions. If a weakly interacting particle such as a

neutrino is produced in ATLAS, its momentum will be unmeasured by the detector,

leading to an apparent imbalance.

Missing transverse energy is derived by calculating the vector sum of energies in the

calorimeter and from muons in the muon spectrometer. Imposing the requirement

that the vector sum of energy should be zero, any deficit in energy is defined as

missing energy, or Emiss
T . This amount is derived using the reconstructed objects

in the event, leading to a so called Object based Emiss
T . Energy deposits outside the

objects are attributed to soft particles and calibrated separately [76].

6.2 Event Selection

To select preferentially events originating from tt̄ production while suppressing back-

ground processes, cuts on the previously mentioned objects, depending on the de-

sired top decay modes, as well as overall event level cuts are applied. Electrons

are required to have ET > 25 GeV, muons are required to have pT > 20 GeV and

jets are required to have pT > 25 GeV. In addition, the event is required to have a

reconstructed primary vertex with at least four associated tracks.

102



6.2.1 Good Runs List

With ATLAS recording a large amount of physics data, it is impractical to assume

the detector is fully operational for the entire data taking period. Downtime for

subdetectors, due to hardware or software problems, can impact on the overall

quality of recorded data. For example, if a large portion of the tracker is turned

off, or the tracking software is disabled, then no track reconstruction is done and

reconstructed objects later in the analysis chain will be affected.

To help manage the data and to identify good quality data from potentially unusable

data, each data taking period in ATLAS is split into runs, with each run being made

of smaller luminosity blocks. Each luminosity blocks represents about two minutes

of data taking in ATLAS.

Luminosity blocks are marked as good or bad based on the detector conditions during

that particular block. For example, if the electromagnetic calorimeter suddenly shuts

down, then the luminosity blocks affected are marked bad. The luminosity blocks

marked good are then counted and placed into a Good Runs List (GRL).

Each run considered in the GRL is also checked to ensure the subdetectors are

behaving as expected. If it is found that something is wrong with a run, such

as part of the tracker being offline, or a calorimeter readout failure, first efforts are

made to recover as much data as possible, as the data may still be usable for physics.

In April 2011, a hardware failure in the electromagnetic calorimeter caused a problem

with the readout capability in a rectangular region of ∆φ×∆η = 0.2× 1.4 in size.

This was a major problem, affecting electron, jet and Emiss
T reconstruction, present

throughout the remainder of the runs until the component was fixed, though the

data from the rest of the detector were perfectly suitable for physics. In order to

be able to use these data, the hole in the calorimeter had to be modelled, and so

a fraction of the MC simulation used for signal and background estimation has the
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calorimeter problem simulated to compensate.

Once a GRL is compiled and checked, it can be used to identify the data runs suitable

for physics analysis. The GRL has a record of all the lumi blocks and runs present

in the dataset, and can be used to calculate the luminosity for that dataset.

6.2.2 Trigger Requirements

Each analysis decay channel discussed here requires every event to have been selected

by a single lepton trigger (either electron or muon) which is fully efficient for leptons

satisfying the pT cut. The triggers are selected based on the run conditions for a

given data taking period. Given that the trigger has a maximum output rate, at

very high luminosities it becomes impractical to save every event from every trigger,

so some of the trigger items are prescaled. This analysis uses the lowest unprescaled

trigger for each data taking period.

Furthermore, the trigger is required to have been fired by one of the selected leptons.

To check this, the position of the trigger object is compared to the position of each

selected lepton, and the closest lepton (with ∆R < 0.15 from the trigger object) is

taken to have fired the trigger.

Table 6.1 shows the trigger configurations for electrons and muons by data taking

period. The EF in the trigger word refers to ‘Event Filter’, e20 states that the

trigger threshold corresponds to 20 GeV, for electrons, and medium refers to the

object quality cuts. In the case of periods L–M, the v means the trigger threshold

varies with η and h states that a veto on hadronic activity is enforced. The electron

trigger condition in periods L–M requires either one of two triggers to pass. This is

due to the non stable efficiency of the EF e22vh medium1 trigger at high pT, where

the EF e45 medium1 trigger performs as desired in this high pT range. The overall

efficiency shape after the OR requirement then behaves as needed.
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Period Luminosity (pb−1) Electron Trigger Muon Trigger

B-D 167.249 EF e20 medium EF mu18
E-H 937.71 EF e20 medium EF mu18
I 333.242 EF e20 medium EF mu18
J 223.49 EF e20 medium EF mu18 medium
K 583.266 EF e22 medium EF mu18 medium
L-M 2401.77 EF e22vh medium1 OR EF e45 medium1 EF mu18 medium

Table 6.1: Trigger requirements for each data period.

6.2.3 Dilepton Selection

For dilepton decay modes, exactly two leptons‡ of opposite sign and either flavour

are required, with at least two jets. Missing transverse energy is required to be

greater than 60 GeV for the ee and µµ channels, which allows strong discrimination

against Z → ll events, which typically do not have much Emiss
T . To further the

Z → ll rejection, a cut around the Z resonance, requiring that the invariant mass

of opposite sign, same flavour lepton pairs differs by more than 10 GeV from the

known Z–boson mass is applied. In addition, to ensure compatibility with the

MC simulation, and to suppress J/ψ and Υ decays, the dilepton invariant mass

is required to be greater than 15 GeV. For the eµ channel, the scalar sum of the

momentum in the event from leptons and jets (HT) is used instead of Emiss
T , and is

required to be greater than 130 GeV.

6.2.4 Single Lepton Selection

For the single lepton decay modes exactly one lepton is required, with at least four

jets. Missing transverse energy is required to be greater than 30 GeV in the electron

channel, with the additional constraint that the transverse mass of the leptonically

decaying W boson§, mT(W ), is greater than 30 GeV. In the single muon channel,

‡Leptons considered for this analysis are electrons and muons only. Tau leptons which decay
to a lighter lepton are considered as the lighter lepton.

§Transverse mass, mT is defined as
√

2× plT × Emiss
T (1− cos(φl − φmiss))
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Figure 6.3: A set of tree level (Leading Order) Feynman diagrams describing interactions
between two quarks via the strong force.

Emiss
T is required to be greater than 20 GeV, while the sum of Emiss

T and mT(W ) is

required to be greater than 60 GeV. Finally, for the single lepton decay modes, at

least one b-tagged jet is required in the event, to suppress background contamination

from W → l+jets events.

6.3 Monte Carlo Generators

In order to compare data recorded in ATLAS with theoretical models, simulated data

are used. To generate the simulated data, a MC generator is needed. The generator

may be tuned to simulate the expected outcomes assuming the Standard Model is

correct, or can be modified to generate various other interesting models.

The nature of a proton proton collision is very complex. In the simplest view, quarks

and gluons inside the proton interact according to the mathematical rules of the

Standard Model. The simplest way to represent this is with a Leading Order (LO)

Feynman diagram as depicted in Figure 6.3.

It is possible to introduce a particle loop into this diagram, while still following

the rules of the Standard Model. In fact, perturbation theory allows for an infinite

number of loop corrections, which must all be calculated and summed over to give
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Figure 6.4: A set of NLO Feynman diagrams describing interactions between two quarks
via the strong force.

an exact solution. Computationally, this is clearly impossible, so a trade off between

computation time and accuracy is needed. Feynman diagrams with one extra loop

are called Next to Leading Order (NLO), and there are many more diagrams than

at tree level, and of a higher complexity. Each extra order gives a slightly better

description of nature, but become increasingly difficult and time consuming to cal-

culate. Figure 6.4 shows a small selection of NLO diagrams for the same process as

in figure 6.3.

6.3.1 Monte Carlo Simulation

Generally, MC generators will stop at either LO or NLO, owing to the huge increase

in computation time with each added loop, for only a small gain in accuracy. For

a given process, the extra loops in NLO calculations can give virtual corrections,

such as in figures 6.4(a) and 6.4(b). These corrections add extra vertices without

changing the initial or final state. These corrections may alter the calculated cross

section or other properties of the process. NLO diagrams can also give extra real

emissions (see figure 6.5), which alter the initial or final states of the process, leading

to NLO simulations producing different distributions, particularly with respect to the

number of jets in the event. NLO generators used for MC simulation in the scope of

this thesis are MC@NLO [77] and POWHEG [78].
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Figure 6.5: A NLO Feynman diagram for a two to two process, with one extra gluon
radiated. The extra gluon is naturally a part of the NLO calculation, and this can provide
up to one extra hard jet. This diagram may also be used in a ‘multi-leg’ calculation, as
part of a qq̄ → qq̄g process.

LO generators can approximate these extra emissions by using a ‘multi-leg’ approach.

For a given process (for example qq̄ → qq̄) all possible Fenyman diagrams at LO are

considered. At NLO, the extra diagrams may introduce additional emissions, or

virtual corrections. The multi-leg approach only includes the diagrams with real

emissions. These could be considered the LO diagrams for qq̄ → qq̄ + 1 (Figure 6.5

also illustrates this). For N extra emissions, then, the LO diagrams for qq̄ → qq̄+N

are considered in the multi-leg approach.

The benefit of this approach is good modelling of extra partons (leading to additional

jets) in a process, without having to calculate all possible virtual corrections, but

with the sacrifice of precision. Often, LO multi-leg generators can give a much better

description of the data, for analyses sensitive to the number of extra jets in the event.

One such multi-leg generator used in the scope of this thesis is ALPGEN [79, 80].

A MC simulation consists of several steps, further illustrated in figures 6.6 and 6.7:

• Matrix Element - The initial hard interaction, between quarks and/or gluons

within the proton is described by a Matrix Element calculation. This repre-

sents the main interaction in an event and generally contains the interesting

physics.
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• ISR/FSR - Quarks and gluons can undergo QCD Bremsstrahlung, emitting glu-

ons before or after the hard scatter and adding extra partons to the event.

• Resonance Decay - Unstable particles produced in the hard scatter decay into

daughter particles. For example, a W boson decaying into a quark anti-quark

pair.

• Multiple Parton Interaction (MPI) - The incoming protons in the collision may

interact more than once, through different partons, in a single event. The

cross section for interesting processes (such as tt̄ production) is usually very

small, so these extra interactions are often soft QCD interactions. One software

package often used to simulate MPI is JIMMY [81].

• Hadronisation - The outgoing partons and beam remnants left after all of the

above have been simulated are quarks, gluons and leptons. The quarks and

gluons carry colour, and QCD confinement does not allow for coloured par-

tons to exist in isolation. The hadronisation stage of the simulation can be

approximated with several different methods. One method, as used with the

PYTHIA generator [82], connects all of the coloured partons by colour con-

finement strings, which then fragment to produce colourless hadrons. Another

method, used by HERWIG [83], groups neighbouring qq̄ pairs into colour

neutral clusters which then decay isotropically.

Care must be taken to avoid overlap between these steps. For example, the Matrix

Element calculation for a process, calculated at NLO or multi-leg, could produce an

extra real emission of a quark. This final state then contains X → Y + q, which

may overlap with final states produced by the parton shower. This would then lead

to a double counting of a given final state. A matching procedure is used to identify

these kinds of overlap in the MC simulation chain, one example of which is the MLM

matching performed in ALPGEN [79].

The Monte Carlo event generator sequence gives a software analogy to the LHC; the
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p p

t t̄

Figure 6.6: Overview of the stages involved in a MC generator simulation of a tt̄ event.
The black part represents the hard scatter, blue represents ISR and red FSR, the purple
part shows the resonance decay, and the green represents MPI. Hadronisation is shown in
figure 6.7.
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Figure 6.7: The same event as in figure 6.6 at the hadronisation stage. The orange bands
represent confinement strings, which undergo fragmentation to produce primary hadrons,
which in turn may further decay to stable hadrons.

machinery which collides protons and produces events. The event generator outputs

stable hadrons and leptons over the full 4π fiducial range. The ATLAS detector is

instrumented up to |η| < 4.9 and within this acceptance, there are gaps for services

and other dead material (such as the magnet system). To provide an accurate

comparison with the recorded data, MC events must be put through a detector

simulation. In ATLAS, the detector is simulated in GEANT4 [84], which provides

an accurate description of the ATLAS detector. Due to the complexity of ATLAS,

simulating all of the components of the detector can be time consuming. For this

reason it may be preferable in some cases to use instead ATLFAST II [85], which

uses a fast calorimeter simulation, giving a ten-fold reduction in required computing

time.
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6.4 Signal and Backgrounds

The event selection described in the previous chapter is designed to reject back-

ground processes while maintaining a strong signal strength. In the dilepton event

selection, events from Z/γ∗ → l+l− processes with extra jets are one of the main

sources of background, due to the two prompt leptons from the Z boson decay. The

cut on the Z mass window reduces a large amount of this background, but there still

remains an irreducible portion. In addition to the background due to Z/γ∗+jets,

events originating from single top, diboson and ‘fake’ lepton production also con-

taminate the signal region. The single lepton decay channel also has contamination

from W+jets events, owing to the production of a single prompt lepton and Emiss
T

from a neutrino. Combined with extra jets, this gives an almost identical signal to

that of semileptonic tt̄ decays.

6.4.1 Backgrounds

To model the background processes, a combination of Monte Carlo simulation and

a data driven technique is employed.

The Z/γ∗+jets background is simulated using the ALPGEN 2.13 [79, 80] Monte

Carlo package, within an invariant mass range of 10 GeV < mll < 2000 GeV. Up to

five extra partons are included in the simulation and the cross section normalised

to a data driven estimate described in section 6.5.1. Dilepton decays with all lepton

flavours are considered in the simulation. The simulated events are then showered

with HERWIG [86]. The Z/γ∗+jets background is one of the dominant back-

grounds in the dilepton channel.

W+jets background events are simulated with ALPGEN, with up to five extra

partons, and showered with HERWIG. W+jets events with extra heavy flavour

partons are also simulated (W + bb̄+ jets and W + c(c̄) + jets). Again, all lepton

112



flavours are considered in the W decay. The W+jets simulation is normalised to

a data driven estimate obtained by the ‘charge asymmetry method’, described in

more detail in section 7.4.14. The W+jets background is one of the dominant back-

grounds in the semileptonic channel.

Diboson events are simulated with ALPGEN for the hard scatter, with HERWIG

used for the parton shower, for dilepton final states. The states considered for the

dilepton diboson decays are:

• WW , with both W → lν

• WZ, with W → X and Z → ll

• ZZ, with Z → X and Z → ll

where X represents any possible final state.

In the ATLAS production of 2011 MC samples, no ALPGEN diboson events with

single lepton final states were simulated, so the HERWIG LO generator is used to

generate the hard scatter and parton shower for these final states. The final states

for the HERWIG diboson generation are filtered for one lepton with pT > 10 GeV

inside |η| < 2.8.

Single top events are simulated with the MC@NLO v4.01 [77] generator, with

parton shower from HERWIG, for the s and Wt channels. A bug was found in

the t channel simulation with MC@NLO+HERWIG, such that unphysical jets

were generated in the parton shower. Therefore, the t channel simulation is done by

AcerMC+PYTHIA, instead.

For dilepton analyses, single top events with only one real lepton in the final state (s

and t channels) can only pass the event selection if a charged lepton is ‘faked’, so are

considered as ‘fake lepton’ events included in the data driven estimation described

in the next section. Events in the Wt channel can include two real leptons, one from
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the top decay and one from the W boson decay, so these are not considered in the

dilepton fake lepton estimation.

6.4.2 Fake Leptons

Fake lepton events are so called due to leptons being reconstructed where no prompt

lepton is present. For example, if a jet from a leptonically decaying W boson in a

W+jets event were reconstructed as an electron, there would be two leptons present

in the event making it a candidate for passing the dilepton event selection. Similarly,

for the s and t single top channels, where only one real lepton is produced in the

single top decay, with another lepton being faked. The Wt channel single top decay

can produce two real leptons in the final state, from the top decay and from the W

boson decay, so events from this channel are not considered as fake lepton events.

Fake leptons may also originate from QCD events with hard jets, or as real soft

leptons from heavy flavour decays.

The contribution to the background from fake leptons is difficult to model with MC

simulations, so a data driven approach is taken to provide an estimate. For this

analysis, the Matrix Method [87] is used to estimate the fake lepton background.

Matrix Method

To estimate fake lepton events, the quality cuts applied to the leptons are reduced,

making a ‘Looser’ lepton. The efficiency of loose to tight leptons is measured for

both prompt and fake lepton sources. To measure the prompt lepton efficiency,

εreal, a ‘tag and probe’ method is used with a sample of known prompt leptons, for

example Z → l+l−. Events from the Z → l+l− sample are selected if they contain

two loose leptons, with no requirement on the jet activity. One of these leptons

which also passes the tight selection requirements is defined as the ‘tag’. The tag is
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also required to have fired the trigger for the event. The second lepton, the ‘probe’,

is then used to measure the loose to tight efficiency, εreal.

To measure the fake lepton loose to tight efficiency, εfake, a sample with at least one

jet with pT > 25 GeV and only one loose lepton is used. To ensure the sample is

dominated by fake leptons, Emiss
T is required to be less than 20 GeV. This region

is not fully free of signal events, however, so an estimate of the number of signal

events is subtracted. The fake efficiency, εfake, is then defined as the fraction of loose

leptons that also pass the tight requirement.

A matrix can then be constructed:

 Nloose

Ntight

 =

 1 1

εreal εfake

 N real
loose

N fake
loose

 (6.4)

Inverting this matrix gives,

N fake
tight = εfakeN fake

loose =
εfake

εreal − εfake
(Nlooseε

real −Ntight) (6.5)

where N fake
tight is the number of fake leptons expected to contaminate the signal region.

In order to use this estimate to produce fake lepton distributions, rather than just a

yield, the efficiencies are parameterised in terms of η and pT. This parameterisation

can then be used to estimate the fake lepton contribution in data events.

To estimate the fake lepton contribution in dilepton events, the same method can

be used, but a larger matrix is constructed for Nll, Nlt, Ntl and Ntt. Figures 6.8

and 6.10 show the description of data in a fake lepton dominated control region for

the dilepton and semilepton channels. The dilepton channel has the opposite sign

requirement on the leptons reversed for this control region. These figures include

an uncertainty band, which is taken from the uncertainty in the data driven fake
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estimation, as well as the uncertainty inherent in the remaining background esti-

mates and uncertainty from other sources (discussed in section 7.4). The largest

uncertainties in figure 6.8 are due to the fake lepton estimate (see section 7.4.14).

The low Emiss
T region in the ee channel shows a particularly large uncertainty due to

contamination of the Z/γ∗ background, and the large uncertainty associated with

that background. Figure 6.9 shows this contamination. A larger veto around the Z

boson mass shows a reduction of Z/γ∗ events in the control region. Within these

uncertainties, the fake lepton dominated regions describe the data reasonably well.
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Figure 6.8: Missing Transverse Energy in a fake lepton control region for the dilepton
channels, where both leptons in the event are required to be the same sign. At least one
jet is required for each event, as well as a 10 GeV veto around the Z boson mass.
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Figure 6.9: Invariant mass in the ee channel in a fake lepton control region. Both leptons
are required to be the same sign and at least one jet is required to be present. a) shows
the standard 10 GeV veto around the Z boson mass. b) shows a larger veto, reducing the
contamination of Z/γ∗ events.
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Figure 6.10: Missing Transverse Energy including a fake lepton control region for the
single lepton channels.
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6.4.3 Signal

The tt̄ signal is generated with MC@NLO+HERWIG, assuming a top quark mass

ofmt = 172.5 GeV, and is filtered to require that at least one of the top quarks decays

leptonically. The cross section of the tt̄ sample is normalised to the approximate Next

to Next to Leading Order (NNLO) HATHOR [88] calculation of 166.8+16.5
−17.8 pb−1,

using the MSTW2008 90% NNLO PDF [89] with PDF+αS uncertainties according to

the MSTW prescription [90]. The calculation is cross checked with the NLO+Next

to Next to Leading Log (NNLL) calculation [91] as implemented in Top++ 1.0 [92].

6.4.4 tt̄ Decays without Spin Correlation

MC@NLO handles the propagation of spin information to the decay products of the

top quarks correctly, such that the final states are influenced by the spin correlation.

In order to create an alternative model where A = 0 such that the spins of the top

quarks are produced equally alike and unlike in all bases, a modification to the MC

generation chain is made.

Once the tt̄ pairs are produced in MC@NLO, the spin information is propagated

to the decay products. Then, the final state is read in by HERWIG to shower.

If, instead, HERWIG reads in the undecayed tt̄ pairs, the spin information is lost

and the decays are produced independently of the spin of the top. This effectively

removes the influence of the spin of the top on its decay products such that no

correlation between the spins can affect the final state. The ∆φ distribution shown in

figure 5.9 utilises both of these signal MC samples with and without spin correlation.
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6.4.5 Pileup Simulation

The MC simulation includes an estimation of the different pileup conditions expected

in data. However, this does not provide an exact simulation of the observed pileup,

and must be reweighted. The average number of interactions per bunch crossing,

< µ >, is calculated for each lumi block. The events in the MC simulation — which

are produced with a given run configuration in mind — are then reweighted such that

the < µ > distribution matches that observed in data in an analysis independent

control region (ie. with no event level cuts applied). Each value for < µ > in a given

run period carries an event weight, which is used to reweight the distribution.

Figures 6.11, 6.12, 6.13, 6.14 and 6.15 show the distribution of the average number

of interactions per bunch crossing as simulated in MC and after reweighting, plotted

after full event selection. There is only a small difference between the unweighted and

reweighted distributions in these figures, due to the MC simulation being targeted

for the known run conditions for the collected dataset. In the case where the MC

simulation is produced before the full dataset is collected, then the reweighting may

have a much larger effect in the case of changing run conditions.
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Figure 6.11: a) Average number of interactions per bunch crossing, a) before, and b) after
pileup reweighting, in the ee channel.
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Figure 6.12: a) Average number of interactions per bunch crossing, a) before, and b) after
reweighting, in the µµ channel.
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Figure 6.13: a) Average number of interactions per bunch crossing, a) before, and b) after
reweighting, in the eµ channel.
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Figure 6.14: a) Average number of interactions per bunch crossing, a) before, and b) after
reweighting, in the e+jets channel.
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Figure 6.15: a) Average number of interactions per bunch crossing, a) before, and b) after
reweighting, in the µ+jets channel.
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Figure 6.16: Z-boson pT distribution inside the Z mass window for the ee channel. The
Emiss

T cut has also been reduced to 30 GeV in these plots. a) shows the distribution
obtained with the nominal MC simulation, b) shows the same distribution after applying
a data driven scale factor.

6.5 Data-Monte Carlo Comparison

The agreement between data and Monte Carlo simulation is checked for a range of

observable quantities before looking at the ∆φ distribution in the signal region, to

ensure that the simulation describes the data. Since the event selection is designed

to enhance the presence of the signal over background, control regions must be

defined in order to check the background description of data. Generally this involves

reversing one or more cuts in order to enhance the background contribution. First,

the dilepton channel is considered, followed by the semilepton channel in the later

chapters.
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Figure 6.17: Z-boson pT distribution inside the Z mass window for the µµ channel. The
Emiss

T cut has also been reduced to 30 GeV in these plots. a) shows the distribution
obtained with the nominal MC simulation, b) shows the same distribution after applying
a data driven scale factor.

6.5.1 Dilepton Control and Signal Regions

For dilepton events with both leptons of the same flavour, events with a dilepton

mass within the Z boson mass window are dominated by the Z/γ∗ process. Figures

6.16 and 6.17 show the Z-boson pT for events with dilepton mass inside the Z mass

window. The expected distribution is in reasonable agreement with the ee channel,

though falls far below the observed distribution in the µµ channel. This is considered

to be due to a mismodelling and is fixed by applying a data driven scale factor to

the Z/γ∗+jets MC simulation. Events within the Z boson mass window originating

from Z/γ∗ are counted, and compared to the number of events in data. The number

of events from other sources, including the tt̄ signal, are subtracted from the data.

The scale factor (SF) is then derived in this control region (CR) as the number

of data events after subtraction, divided by the number of Z/γ∗ events. This scale

factor is then used to normalise the Z/γ∗ contribution in the signal region (SR).
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The scale factors for the ee and µµ channels are derived using table 6.2. The final

scale factors used are shown in table 6.3, where

SF (SR) =
Ndata(CR)−Nbkg(CR)

NZ→l+l−(CR)
. (6.6)

ee µµ

tt̄ (CR) 173.0 460.5
Z → ττ (CR) 0.7 2.2
W+jets (CR) 0.5 0.0
Diboson (CR) 78.1 200.5
Single Top (CR) 8.4 20.0
Fake Leptons (CR) 114.3 29.9
Total Background (CR) 374.9 713.1
Z → l+l− (CR) 2741.6 7586.0

Data (CR) 3170 9194

Z → l+l− (SR) 20.5 74.7

Table 6.2: Number of events in the Z/γ∗ control region for each signal and background
source. CR denotes events inside the control region, where the control region is defined
with |mll −mZ | < 10 GeV, Emiss

T > 30 GeV and requiring at least two jets. SR denotes
the signal region.

channel Scale Factor

ee 1.020
µµ 1.118

Table 6.3: Scale factor used to normalise the Z/γ∗ background contribution for the dilep-
ton channels.

In the ee and µµ channels, distributions of events with mll inside the Z mass window

(mZ±10 GeV) are dominated by Z/γ∗ production. Figures 6.18 and 6.19 show that

the data are well described by the background simulation in this control region.

To check the background modelling outside of the Z mass window, the Emiss
T cut

is reversed to ensure that background processes dominate, such that events are

required to have Emiss
T < 60 GeV. Figure 6.20 shows that the data are described

well by the simulation in this region.
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Figures 6.21 and 6.22 show the ∆φ distribution inside the Z mass window, before

and after applying the data driven scale factor. For the µµ channel, the agreement

between the data and MC simulation is much improved after applying a data driven

scale factor. The scale factor in the ee channel is of the order 2%, so has only a

small effect.

After deriving the scale factors in the control region, they can be applied to the

signal region. The scale factor affects only the normalisation of the distribution and

not the shape. Table 6.4 shows the number of expected events from the different

signal and background sources as well as the number of observed events. The overall

yield shows a good agreement with the prediction.

Figures 6.23, 6.24 and 6.25 show the pT distributions for the leading and subleading

leptons in the same flavour lepton channels, and for electrons and muons in the

opposite flavour channel. The agreement between data and the MC simulation is

good.

Channel ee µµ eµ

tt̄ 583.85 1673.42 4413.64

Z → l+l− 20.54 83.51 0.00
Z → ττ 18.48 68.43 175.34
Diboson 22.93 61.38 177.60
Single Top (Wt-channel) 31.20 84.00 228.48
Fake Leptons 16.41 28.97 99.21

Expected 693.41 1999.70 5094.28
Observed 740 2058 5328

Table 6.4: Event yields after all event selection criteria for the dilepton channel.
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Figure 6.18: a) Emiss
T for events in the ee channel, b) for events in the µµ channel, with

opposite sign leptons and at least two jets. The dilepton invariant mass is required to fall
within the Z boson mass window.
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Figure 6.19: a) Number of selected jets in the ee channel, b) in the µµ channel, for events
with opposite sign leptons and at Emiss

T < 60 GeV. The dilepton invariant mass is required
to fall within the Z boson mass window.
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Figure 6.20: a) Invariant mass of the two electrons, where Emiss
T is required to be less than

60 GeV, in the ee channel. b) Invariant mass of the two muons, where Emiss
T is required

to be less than 60 GeV, in the µµ channel. Events are required to have at least two jets.
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Figure 6.21: ∆φ distribution inside the Z mass window for the ee channel. a) shows the
distribution obtained with the nominal MC simulation, b) shows the same distribution
after applying a data driven scale factor. Events are required to have Emiss

T > 30 GeV and
at least two jets.
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Figure 6.22: ∆φ distribution inside the Z mass window for the µµ channel. a) shows
the distribution obtained with the nominal MC simulation, b) shows the same distribution
after applying a data driven scale factor. Events are required to have Emiss

T > 30 GeV and
at least two jets.
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Figure 6.23: ET of the a) leading, and b) subleading electron for events passing the ee
channel event selection.
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Figure 6.24: pT of the a) leading, and b) subleading muon for events passing the µµ
channel event selection.
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Figure 6.25: a)ET of the electron, and b) pT of the muon for events passing the eµ channel
event selection.
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6.5.2 Lepton+Jet Control and Signal Regions

In the single lepton decay mode, the b–tag requirement is one of the strongest cuts

to suppress background contributions. Reversing this cut, requiring exactly zero b–

tags, gives a background dominated selection, allowing for a control region to check

the background modelling. In this region, the dominant background contributions

are from W+jets production and fake leptons. Figures 6.26 and 6.27 show the data

are described well by the simulation in this region.

Applying a b–tag in the selection allows a strong suppression of background events;

events originating from a tt̄ decay will contain two real b-quarks, while the majority

of the background sources do not produce hard b-quarks. Before a b–tag requirement

is applied, the dominant background sources are from W+jets events, and fake

leptons. The MC simulation description of data is shown, for the electron and muon

channels respectively, for events with no b–tagging requirement, in figures 6.28 and

6.29. Table 6.5 shows the number of expected events from the different signal and

background sources as well as the number of observed events, for events with no

b–tag requirement.

After applying a b–tag requirement, the W+jets and fake lepton contributions are

significantly reduced, though still remain a dominant background. Notably, the

single top background is largely unaffected, due to the presence of a prompt b-

quark in the t and s channel production diagrams. The MC simulation description

of data is shown for events containing at least one b–tag in figures 6.30 and 6.31.
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Figure 6.26: a) ET of the selected electron, requiring exactly zero b-tags. b) Emiss
T distri-

bution of selected events in the e+jet channel, requiring exactly zero b-tags.
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Figure 6.27: a) pT of the selected muon, requiring exactly zero b-tags. b) Emiss
T distribution

of selected events in the µ+jet channel, requiring exactly zero b-tags.
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Table 6.6 shows the number of expected events from the different signal and back-

ground sources as well as the number of observed events. Worth noting is that

the signal to background ratio after applying a b-tag requirement increases almost

fourfold.

Channel e+jets µ+jets

tt̄ 18694 30816

W+jets 13225 28316
Z+jets 2894 2929
Diboson 231 377
Single Top 1471 2461
Fake Leptons 5043 5030

Expected 41558 69929
Observed 40875 71521

Table 6.5: Event yields after all event selection criteria, with no b-tag requirement, for
the single lepton channel.

Channel e+jets µ+jets

tt̄ 16122 26559

W+jets 2346 4875
Z+jets 447 482
Diboson 47 74
Single Top 1177 1970
Fake Leptons 1071 1846

Expected 21211 35807
Observed 21910 37919

Table 6.6: Event yields after all event selection criteria, including at least one b-tag, for
the single lepton channel.
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Figure 6.28: a) ET of the selected electron before b-tagging. b) Emiss
T distribution of

selected events before b-tagging.
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Figure 6.29: a) pT of the selected muon before b-tagging. b) Emiss
T distribution of selected

events before b-tagging.
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Figure 6.30: a) ET of the selected electron after b-tagging. b) Emiss
T distribution of selected

events after b-tagging.
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Figure 6.31: a) pT of the selected muon after b-tagging. b) Emiss
T distribution of selected

events after b-tagging.
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6.6 Reconstructing the tt̄ system in the single lep-

ton channel

In order to construct ∆φ in the single lepton channel, the lepton is chosen as the

strongest analysing particle, with the second strongest analyser being the down-type

quark. Experimentally it is impossible to distinguish a jet produced by a down-type

quark or an up-type quark, though it is possible to enhance the selection of the jet

originating from the down-type quark through simple kinematic requirements. To

do this, reconstruction of at least the hadronic top quark is required.

6.6.1 The pmax
T Method

The hadronic top quark is reconstructed with a simple cut based method. Each

combination of three jets in the event is grouped to make a top quark candidate and

the pT of this candidate is calculated. The candidate with the highest pT is taken as

the reconstructed hadronic top quark. Within the reconstructed top quark, the three

possible pairings of jets are reconstructed as W boson candidates. If a jet within the

W boson candidate is tagged as a b-jet, then the candidate is discarded. If no more

candidates remain after the b-jet veto, the event is considered misreconstructed and

discarded. If multiple candidates remain after the b-jet veto, the candidate with

invariant mass closest to the true W boson mass (mW = 80.4 GeV) is taken as the

best reconstructed W boson.

Figure 6.32 shows the reconstructed η distribution after constructing the hadronic

top with the pmax
T method.
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Figure 6.32: a) Reconstructed η for the hadronically decaying top quark, reconstructed
with the pmax

T method in the e+jets channel. b) Reconstructed η for the hadronically
decaying top quark, reconstructed with the pmax

T method in the µ+jets channel.

Selecting the down-type quark

For this analysis, it is important to be able to reconstruct the jet from the down-type

quark originating from the W boson decay, and distinguish this from the up-type

quark from the same decay (and any other jets produced in the event). While

up-type quarks and down-type quarks are largely indistinguishable, the fact that

the top decays weakly provides a unique opportunity to differentiate between the

two. The weak interaction is V − A, so only couples to left handed fermions and

right handed antifermions. In the top decay, this can be interpreted such that the

down-type quark is analogous to the charged lepton, and the up-type quark to the

neutrino, and the same spin arguments can be applied. The W decay will tend to

emit the down-type quark anti-parallel to its direction of flight in the top rest frame,

making it spatially closest to the b-quark from the top decay. This suggests that

the down-type quark has, on average, a lower energy than the up-type quark, in the

rest frame of the parent top quark.
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A study at parton level, in the fiducial range of the single lepton event selection,

shows that this difference allows the down-type quark to be selected around 56% of

the time over the up-type quark.

Improvements to reconstruction

The pmax
T method can be improved by applying simple invariant mass requirements

to the top and W candidates. The reconstructed top quark candidate must satisfy

the condition |mcandidate
top − mtop| < XX GeV. If the highest pT candidate does not

satisfy this condition, the next highest pT candidate is considered until a successful

candidate is chosen. If no successful candidate is found, the event is tagged as

misreconstructed and discarded.

A similar requirement can be applied to the W-boson candidate, which must satisfy

|mcandidate
W − mW | < YY GeV. If no candidate satisfies this requirement, then the

event is tagged as misreconstructed and discarded.

A plot showing reconstruction efficiency as a function of top mass window, XX, and

W mass window, Y Y , is shown in Figure 6.33. In this plot, each bin represents a

specific configuration of mass windows. For example, the bin where XX = 45 GeV

and Y Y = 25 GeV shows the purity of selected down quarks for events where

|mcandidate
top −mtop| < 45 GeV and |mcandidate

W −mW | < 25 GeV.

A tighter window around both the candidate W−boson and top quarks tends to

give a higher purity of selected down-type quarks, though this suffers from loss in

statistics.

Without these additional constraints, the pmax
T method correctly selects the true

down-type quark in simulated tt̄ events 32.0% of the time. After requiring, for

example, |mcandidate
top −mtop| < 25 GeV and |mcandidate

W −mW | < 25 GeV, the down-

quark is correctly selected 39.5% of the time, at the sacrifice of statistics, as shown
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in figure 6.33.

If a simple selection of one of the four highest pT jets were to be selected as the down-

quark candidate, the down-quark purity is 15.8%, 18.0%, 22.7% and 23.5% for the

first, second, third and fourth jet respectively, measured in a counting experiment

with a NLO simulation. The down quark is observed to appear most frequently in

the leading 5 jets, as expected for tt̄ pair events simulated with a non multi-leg NLO

generator, such as MC@NLO.

The increase of purity at the loss of statistics suggests an optimal window configu-

ration may exist, such that the expected uncertainty of the result is minimised. An

optimisation of this reconstruction method is discussed in section 7.3.

6.7 Summary

The event selection for the dilepton and semilepton channels discussed in this chap-

ter provides a strong suppression of background processes, allowing preferentially

tt̄ events to be selected. This allows a fairly clean sample of events with which

to perform the analysis. The dilepton channel benefits from not requiring any re-

construction of the tt̄ system, while this is not possible for the semilepton channel

due to the ambiguity in finding the jets resulting from the quarks from a hadronic

top decay. However, the reconstruction performs well at selecting the down-type

quark, over the up-type quark — also from the W boson decay — and the other

jets produced in the event.

The next chapter uses the event selection and reconstruction described here in order

to perform a measurement of the spin correlation in the tt̄ system in events at
√
s = 7 TeV, with 4.7fb−1 of 2011 data recorded at ATLAS.
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(a) (b)

Figure 6.33: a) Efficiency of correctly selecting a down quark from all reconstructed events.
b) Total number of reconstructed events.
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Chapter 7
Measuring Spin Correlation in tt̄ events

Chapter 6 outlines the MC simulation, event selection and reconstruction used for

the purposes of constructing the ∆φ distribution, which is sensitive to the presence

of spin correlation. This chapter outlines the process used in order the measure the

degree of spin correlation using this distribution. The data used for this measure-

ment corresponds to the full 2011 recorded dataset of 4.7 fb−1, at a centre of mass

energy of 7 TeV.

7.1 Delta Phi

After event selection the difference in azimuthal angle, ∆φ, is calculated between

the two charged leptons in the dileptonic channel, or the charged lepton and the

reconstructed down-type quark candidate in the semileptonic channel. ∆φ is defined

as the smallest azimuthal angle difference, which implies 0 ≤ ∆φ ≤ π. This quantity

is calculated for each source of background and the two signal models (Standard

Model, and without spin correlation), as well as for data.

Figure 7.1 shows the reconstructed ∆φ for the dileptonic channels, and figure 7.2
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for the semileptonic channels.

7.2 Fitting Procedure

In order to extract the spin correlation information from the ∆φ distribution, a

template fitting method is employed. Two signal MC models are considered: A

model with the degree of spin correlation corresponding to the Standard Model

prediction, and a model which does not consider spin correlation. These two models

are described in the previous chapter.

Templates are constructed from both signal models, as well as the background ex-

pectation. A fit with two free parameters is then performed. The first parameter is

the ‘fraction of Standard Model’, or fSM
∗. In the case of the Standard Model tem-

plate, this has a value of fSM = 1. For the model without spin correlation, fSM = 0.

In the helicity basis, fSM = 1 corresponds to the Standard Model expectation of

A = 0.31. The spin correlation parameter is assumed to be a linear mix of the two

models. The value of fSM is allowed to float above 1 and below 0, but care must be

taken when measuring close to the boundary of A = ±1 (in the helicity basis, this

corresponds to a measured value of fSM ∼ 3.2. Section 7.5 discusses how to treat

cases where the measurement is close to the boundary. The second parameter is the

tt̄ cross section, introduced as a normalisation parameter on the MC simulation.

In the case where a measurement would observe fSM > 1, the physical meaning is

simply that there are more like spin top quark pairs produced than expected in the

Standard Model.

∗fSM is used in place of A due to the ∆φ distribution not being associated with any given basis
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Figure 7.1: Distribution of ∆φ for events in the a) ee, b) µµ and c) eµ channel. The solid
line represents Standard Model spin correlation and the dashed line represents a model
with no spin correlation. The ratio of the two samples is shown as the dashed line in the
lower portion of the plot, with the uncertainty on the simulation shown as the blue band.
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Figure 7.2: Distribution of ∆φ for events in the a) e+jets and b) µ+jets channel. The solid
line represents Standard Model spin correlation and the dashed line represents a model
with no spin correlation. The ratio of the two samples is shown as the dashed line in the
lower portion of the plot, with the uncertainty on the simulation shown as the blue band.
Note: these plots are produced using the optimised reconstruction described in section
7.3.
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The fit uses a binned maximum likelihood function, which is defined as

L =
B∏
i=1

P(ni;xi), (7.1)

where P(ni;α) is the Poisson probability of observing n events in bin i, given a

model α — which generates xi events in bin i — and B is the number of bins.

The Poisson distribution is defined as

P(ni;xi) =
e−xixnii
ni!

, (7.2)

with

xi =
σfit
σtt̄

(NSM
i fSM +NUC

i (1− fSM)) +NBG, (7.3)

where σfit is the fitted tt̄ cross section, NSM
i is the number of expected events from

the Standard Model template in bin i, NUC
i is the number of expected events from

the ‘uncorrelated’ template in bin i, NBG
i is the number of expected background

events in bin i, and fSM is the ‘fraction of Standard Model’, as explained earlier.

Figures 7.3 and 7.4 shows example log likelihood distributions obtained from the fit

for each channel, performed on pseudo-data. The likelihood value for each point is

transformed as −2 ln(L)+C, where C is a constant used to shift the minimum of the

distribution to 1. The maximum likelihood (or the minimum in the plot) corresponds

to the best fit value for fSM and σtt̄, with an uncertainty given by the ellipse where

−2 ln(L)+C = 2. It is clearly evident that the eµ channel performs best, due to the

large separation between the two signal models, and high statistics, in comparison

to the small separation in both semilepton channels, or the low statistics in the ee

and µµ channels.
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(a) (b)

(c)

Figure 7.3: Log Likelihood distribution for a pseudo-experiment in a) the ee channel, b)
the µµ channel, and c) the eµ channel. The minimum point of the distribution is shifted
to unity.
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(a) (b)

Figure 7.4: Log Likelihood distribution for a pseudo-experiment in a) the e+jet channel
and b) the µ+jet channel. The minimum point of the distribution is shifted to unity.

7.2.1 Pseudo-experiments

In order to deterimine expected statistical and systematic uncertainties, pseudo-

experiments are used. For each bin in the ∆φ distribution, pseudo-data are gener-

ated by selecting a random number in the Poisson distribution for expected number

of signal events, plus another random number from the Poisson distribution for the

expected number of background events.

Each bin then contains

Npseudo−data = N rand
sig +N rand

bkg . (7.4)

The generated pseudo-data are then fitted using the likelihood function defined in

equations 7.1, 7.2 and 7.3, where Npseudo−data becomes ni in 7.2.

Figure 7.5 shows an example distribution of fSM obtained from 20,000 pseudo-
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Figure 7.5: Distribution of measured fSM for 20,000 pseudo-experiments. The width of
the distribution provides an estimate for the statistical uncertainty obtained from fitting
to data.

experiments in the e+jet channel. The Standard Model tt̄ template, where fSM = 1

was used to generate the pseudo-data for this distribution. The result of the pseudo-

experiments is fitted with a Gaussian, where the width corresponds to the expected

statistical uncertainty obtained by fitting the data. The mean is around fSM = 1,

which is consistent with the input value.

In order to check the performance and linearity of the fit, several input distributions

are created, corresponding to several values of fSM, with 20,000 pseudo-experiments

generated for each distribution. To generate the fSM distributions, the two model

templates are used. The number of events in each bin is defined as

Nmix = fSMNSM + (1− fSM)NUC, (7.5)

where NSM and NUC are the number of events in the Standard Model and ‘uncorre-

lated’ templates. The background is unaffected by the presence of spin correlations

in tt̄, so the same background template is used for each input distribution.
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Figure 7.6: Distribution of measured fSM for 20,000 pseudo-experiments and seven input
values of fSM between -1 and 2.

The generated pseudo-data for each value of fSM are then fitted following equations

7.1, 7.2 and 7.3. Figure 7.6 shows the mean measured value for seven input values

of fSM, between -1 and 2, along with the corresponding expected statistical uncer-

tainty, in the e+jet channel. The linearity and consistency in the expected statistical

uncertainty is a good indicator that the fit performs well over the tested range.

7.3 Optimising the lepton+jets reconstruction

In order to determine the optimal size of the mass windows for each reconstructed

object, the width of the gaussian generated by fitting several pseudo-experiments is

used to estimate the statistical uncertainty on the measurement. This estimated

uncertainty is then minimised to find the optimal reconstruction configuration.

For each combination of mass windows (as seen in figure 6.33), 20,000 pseudo-

experiments are performed, and the width of the gaussian distribution of measured
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Figure 7.7: Expected statistical uncertainty when fitting pseudo-data to Monte Carlo
templates of the distribution of ∆φ for Standard Model and Uncorrelated scenarios. The
sensitivity was estimated for various permutations of the reconstructed object mass win-
dow requirements. The optimal set of mass windows are 35 GeV around the reconstructed
top and 25 GeV around the reconstructed W .

fSM for each set of pseudo-data is recorded.

After performing this optimisation, it is determined that having a window around

the top mass of 35 GeV and a window around the W boson mass of 25 GeV results in

the smallest expected statistical uncertainty (±0.228), based on only signal events.

This corresponds to a down-quark purity of 39.0%. This is illustrated in Figure 7.7.

The number of events passing the optimised reconstruction is shown in table 7.1.

While around half of the data is removed after performing the reconstruction, the

down quark purity is increased, allowing for a more sensitive measurement to be

made.
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channel e+jets µ+jets

tt̄ 8063 13386

W+jets 823 1708
Z+jets 151 172
diboson 17 28
single top 431 735
fake leptons 422 689

exp 9908 16718
data 10162 17579

Table 7.1: Event yields after reconstruction with pT-max, implementing the optimised
mass windows.
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7.3.1 Reconstructed Delta Phi versus Truth

As it is not expected that the down-type quark is reconstructed correctly for every

semileptonic event, the true ∆φ distribution in the lepton + jets channel will be di-

luted somewhat, resulting in a reduced separation between the two spin correlation

models, or a change in the shape of the distribution with respect to the expectation.

To check if this has a significant effect on the reconstruction of the ∆φ variable, the

reconstructed ∆φ for each event is plotted against the true ∆φ. Figure 7.8 shows

this distribution for both Standard Model and Uncorrelated MC simulation samples.

There is a strong correlation between truth and reconstructed ∆φ, suggesting that

the loss of down-quarks does not have a strong shape changing impact on the vari-

able, though only around 35 − 45% of the reconstructed events give the ∆φ value

measured at parton level, suggesting the separation between the two models will be

reduced somewhat.

(a) (b)

Figure 7.8: Distribution of ∆φ at parton level, for semileptonic events, against the fully
reconstructed value of ∆φ for a) Standard Model Monte Carlo, b) Uncorrelated Monte
Carlo.
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7.4 Systematic Uncertainties, Corrections and Cal-

ibrations

A major source of uncertainty in the measurement comes from systematic effects,

such as jet energy calibration and MC generator tuning. Each calibration or sim-

ulation model has an associated uncertainty, the effect of which is estimated for

each source of uncertainty. This section describes the sources of the systematic

uncertainties considered in this analysis.

In order to estimate the size of a systematic uncertainty, the parameter under con-

sideration (for example the parton shower model) is varied in the analysis, and the

full analysis chain repeated. The two signal templates and the background tem-

plate used to perform the fitting procedure are left unchanged. The systematically

shifted ∆φ distribution is then fitted to the unchanged templates for 20,000 pseudo-

experiments, and the mean result noted. Subtracting the mean result from the

systematically shifted analysis from the unchanged analysis provides an estimate of

the systematic effect. Some estimations of systematic uncertainty differ from this

and are described in the text where necessary.

Figure 7.9 shows an illustrative example of evaluating a systematic uncertainty, in

this case for evaluating the uncertainty due to parton shower modelling. The black

line shows the ∆φ distribution using the PYTHIA parton shower model, while

the red line shows the same using HERWIG. Each model is then used to generate

pseudo-data, which is fitted to the spin correlation templates. The resulting gaussian

distributions are shifted relative to each other and the difference in mean is taken

as the systematic uncertainty.

Table A.1 shows a complete summary of the systematic uncertainties considered in

this analysis. Each uncertainty considered is described in the following sections.
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(a) (b)

Figure 7.9: An example illustrating how a systematic uncertainty is evaluated. a) shows
the ∆φ distribution for the two systematic samples in red and black, with the templates
shown in blue (Standard Model) and dashed green (zero spin correlation). The background
is shown as the dashed red histogram. b) shows the results for fitting each systematic
difference for 20,000 pseudo-experiments. The difference between the two means is taken
as the systematic uncertainty.
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Generator Ahelicity

NLO calculation 0.309 [17]

MC@NLO (Standard Model) 0.301 ± 0.003
POWHEG+Herwig (Standard Model) 0.243 ± 0.003
POWHEG-BOX (Standard Model) 0.282 ± 0.003
MC@NLO+Herwig (Uncorrelated) -0.003 ± 0.004
POWHEG-BOX+Herwig (Uncorrelated) 0.001 ± 0.003

Table 7.2: Directly observed values for the spin correlation parameter, A, for both Stan-
dard Model and ‘uncorrelated’ MC simulation, comparing MC@NLO to POWHEG.
POWHEG+Herwig (Standard Model) is the version generated for ATLAS.

7.4.1 Monte Carlo Generator Uncertainty

The uncertainty due to modelling of the MC simulation is generally considered as a

difference between two MC generators. The most common way to evaluate this un-

certainty within ATLAS is as the difference observed when switching from MC@NLO

to POWHEG. However, a bug present in POWHEG affecting only the spin corre-

lation was found, which makes this comparison an unreliable method of estimating

the systematic uncertainty.

Figure 7.10 shows a comparison of cos θ1 cos θ2 in the helicity basis, at parton level,

between MC@NLO and POWHEG, for both Standard Model and ‘uncorrelated’

cases. The version of POWHEG used for the ATLAS MC simulation production is

known to have a bug affecting some NLO diagrams with relation to spin correlation;

the qg and gq̄ production diagrams did not include the tt̄ spin correlation. A later

version with a fix addressing this bug (denoted POWHEG-BOX) was also inves-

tigated, with a simulation of only the hard scatter. The measured value of Ahelicity

is improved but still shows a significant departure from the MC@NLO simulation.

The value of Ahelicity measured in MC@NLO is consistent with the NLO prediction.

The directly observed values of the spin correlation parameter, A, in the helicity

basis for all five samples are shown in table 7.2.

The POWHEG generated sample shows large a deviation from the Standard Model
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Figure 7.10: Parton level distribution of cos θ1 cos θ2 for the dilepton channel, compar-
ing MC@NLO and POWHEG for both Standard Model spin correlation and zero spin
correlation models. Two versions of POWHEG are considered, where POWHEG-BOX
includes a bug fix addressing the spin correlation. Both versions differ significantly from
the MC@NLO version.
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value, where the MC@NLO sample shows consistency with the Standard Model

prediction of A = 0.309. This difference at parton level suggests that evaluating the

difference between MC@NLO and POWHEG in order to estimate the uncertainty

introduced by the MC simulation will lead to an overestimation.

Instead, to estimate the uncertainty on the MC generator, the factorisation and

renormalisation scales in MC@NLO are varied. Renormalisation is a procedure

used to ensure processes are calculable at a given order. For example, at NLO, a

process may include several loops, some of which diverge in the calculation. Renor-

malisation absorbs these divergences in order to produce finite results. The fac-

torisation scale separates processes calculable with perturbation theory from those

calculated in the PDF. The choice of scales directly affects the matrix element cal-

culation for NLO generators [93].

In order to estimate the uncertainty on the hard scatter calculation, these scales

are varied by a factor of two up and down, and the difference between the two

evaluated as an envelope. The observed full difference between the mean value of

the fit parameter fSM, as measured from both samples is halved and used as an

up/down uncertainty. This uncertainty only affects the tt̄ signal MC simulation.

7.4.2 Parton Shower Model

To evaluate the uncertainty due to the parton shower generator, two samples with

identical Matrix Element generation but with different parton shower models (us-

ing HERWIG and PYTHIA) are considered. Both samples are generated with

POWHEG calculating the hard scatter. Since both samples use POWHEG, the

incorrect modelling of the spin correlation is present in both systematic samples

and should have a small effect; the only difference between the two samples is the

parton shower model used. Both samples are used in place of the tt̄ signal in the

analysis and the fit performed on 20,000 pseudo-experiments. The measured full
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Parameter MorePS LessPS

PARP(67) 1.75 0.70
PARP(71) 0.6450 0.2150
PARP(64) 0.6 3.60
PARJ(82) 0.5 1.66

Table 7.3: Variation of the PYTHIA parameters used for the estimation of ISR/FSR
uncertainties.

difference of fSM between these two samples is taken as the systematic uncertainty.

This uncertainty only affects the tt̄ signal MC simulation.

7.4.3 ISR/FSR Model

In order to estimate the uncertainty due to modelling of the ISR/FSR, samples are

generated (with nomenclature ‘MorePS’ and ‘LessPS’) identical but for the ISR/FSR

parameters in the parton shower. The PYTHIA parameters controlling ISR and

FSR in the generator, PARP(67), PARP(71), PARP(64) and PARJ(82), are

varied as shown in table 7.3. PARP(67) and PARP(71) are multiplicative factors

to the Q2 hard scattering scale in initial and final state radition, affecting space-

like and time-like showers respectively. PARP(64) is a multiplicative scale factor

for the squared transverse momentum evolution scale, K2
⊥, used as a scale in αs.

PARJ(82) is the invariant mass cut off for parton showers, below which partons

are not assumed to radiate [94].

This uncertainty only affects the tt̄ signal MC simulation. The two models are used

to replace the tt̄ MC simulation in the analysis, with the average result for each

model evaluated using pseudo-experiments. The two models are considered as an

envelope and as such half of the full difference is taken as a systematic uncertainty.
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7.4.4 Parton Distribution Function

The uncertainty due to the choice of PDF is evaluated by reweighting the templates

used in the analysis, with different PDF sets. The analysis is then performed once

for each PDF set, and the value of fSM observed is recorded.

Three PDFs are considered for this uncertainty:

• CTEQ66 - central value + 44 error sets [95]

• MSTW2008nlo68cl - central value + 40 error sets [96]

• NNPDF20 - 100 error sets (mean taken as central value) [97]

It is not feasible for each of the individual PDFs along with their errors to be sim-

ulated fully in MC in order to evaluate the uncertainty, due to the vast amount of

computing time required. Instead, the full PDF information from the simulation of

the nominal MC samples is stored, and used to reweight the events for a chosen PDF,

using LHAPDF [98] and following the PDF4LHC [99] recommendations.

The results for the CTEQ66 PDF sets are combined using a symmetric Hessian

method [95],

∆x =
1

2

√∑
i

(x+
i − x−i )2, (7.6)

where x±i are the up and down variations for a given error set, and the sum runs

over all error sets.

MSTW2008nlo68cl PDF sets are combined with an asymmetric Hessian method

[96],
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∆x+ =

√∑
i

(xi − x0)2, xi − x0 > 0 (7.7)

∆x− =

√∑
i

(xi − x0)2, xi − x0 < 0, (7.8)

where x0 is the measured value of fSM from the central PDF set and xi are the fSM

results from the variations.

NNPDF20 PDFs are not provided as up/down shifts in sets, but instead are pro-

duced by varying parameters within the PDF. As such, the results for NNPDF20

are combined with a simple RMS method. The total PDF uncertainty is then evalu-

ated as the envelope containing the largest error band up shift and the largest error

band down shift.

Figures 7.11 and 7.12 show the results of the PDF uncertainty evaluation for all

five analysis channels. The red band represents the combined variation due to the

CTEQ66 PDF set, the blue band the variation due to the NNPDF20 PDF set, and

the green band the variation due to the MSTW2008nlo68cl PDF set. In figure

7.11 a), the largest value covered by any given band is around 1.16, with the smallest

value covered by any given band around 0.88. The size of the systematic uncertainty

on fSM is then (1.16−0.88)/2 = 0.14. In the ee channel, each of the PDF sets presents

a fairly distinct mean value. This may be due to statistical fluctuations, as each

PDF set is in effect a statistically separate sample, while the variations within the

PDF sets are based on the same mean result.
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Figure 7.11: Measured values of fSM for each PDF set variation for a) the ee channel, b)
the µµ channel, and c) the eµ channel. The coloured bands show the combined uncertainty
for each PDF set. The total uncertainty is the overall spread of all three of these bands.
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Figure 7.12: Measured values of fSM for each PDF set variation for a) the e+jets channel,
and b) the µ+jets channel. The coloured bands show the combined uncertainty for each
PDF set. The total uncertainty is the overall spread of all three of these bands.
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7.4.5 Template Statistics

The MC simulation used to construct the templates for the analysis are limited in

size due to the large amounts of processing time required in production. This has

the effect that the statistical uncertainty on the templates is non-negligible and must

be taken into account.

To do this, the templates for the two signal models and the background are varied

within their statistical uncertainties. For each bin in each template, the number of

events is smeared within the uncertainty. This then generates a set of ‘variation’

templates which are used in place of the ‘nominal’ templates in the analysis. The

effect of varying the templates alters the result of a fit to data, and the results are

recorded for 20,000 different variations. The width of the resulting distribution of

measured fSM is taken as the systematic uncertainty.

7.4.6 Luminosity Uncertainty

The integrated luminosity of the 2011 dataset recorded in ATLAS was measured to

be 4.7 fb−1, for the GRL used in this analysis, with a ±1.8% uncertainty [100]. The

luminosity is used in the analysis to normalise the templates before performing the

fitting procedure. As the tt̄ cross section is a free parameter in the fit, but the

background contribution normalisation is fixed, a change in luminosity will affect

the background contamination which may alter the fitted result.

The MC simulation is scaled up/down corresponding to the luminosity uncertainty

and pseudo-data are picked from the resulting distributions. These pseudo-data

are then fitted to the unchanged templates. The fitting procedure is performed on

the pseudo-data for 20,000 pseudo-experiments, and the systematic uncertainty is

obtained by taking the difference between the nominal sample and the luminosity

scaled up/down samples.
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7.4.7 Jet Energy Scale

While the dilepton channel does not rely on jets to produce the ∆φ distribution,

the event selection does impose jet requirements. This can indirectly affect the

measurement by adding or removing events based on the jet cuts. The semileptonic

channel is more directly affected by jet uncertainties due to the jet used in calculating

∆φ.

The Jet Energy Scale (JES) applies calibrations to jets in the analysis, based on

calorimeter response and noise studies [101]. This is required due to differences be-

tween the ATLAS detector response and the detector simulation. These calibrations

introduce uncertainties to the jet energy determination, which are estimated within

the scope of the JES uncertainty. In total, the energy scale uncertainty on a central,

high pT jet is generally between 2.5% and 5% [101].

There are 16 nuisance parameters as part of the JES systematic, addressing factors

included in the calibration, as well as treating the flavour response of the detector,

its performance with pileup, and the effect of nearby jets on the calibration. Each

of these components is evaluated separately — varying the parameter within its

uncertainty, performing pseudo-experiments and recording the average value of fSM

— and the resulting uncertainties added in quadrature to give an estimate of the

total JES uncertainty. The largest contribution to the JES uncertainty comes from

the flavour composition and response and b–jet calibrations.

7.4.8 Jet Energy Resolution

After calibration, jets still have an uncertainty on their energy measurment. The

effect of this measurment resolution can alter the number of jets passing the event

selection cuts, or change the reconstruction in the semileptonic channel, thus af-

fecting the spin correlation measurement, if the energy is varied within its uncer-
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tainty. To estimate the uncertainty due to the jet resolution, the energies of the jets

are smeared within their resolutions and the analysis repeated for 20,000 pseudo-

experiments [101].

7.4.9 Jet Reconstruction Efficiency

The efficiency with which a jet is reconstructed was measured in data and is used to

remove randomly jets from an event, simulating cases where a jet may be present but

unreconstructed, with respect to the nominal analysis [101]. The jet reconstruction

efficiency plateaus close to 100% for jets with pT larger than around 25 GeV. Pseudo-

data are generated from the changed MC simulation for 20,000 pseudo-experiments.

Each set of pseudo-data is fitted to the nominal templates and the average result

over all pseudo-experiments is recorded. The difference between the result with ran-

domly removed jets is subtracted from the nominal result and taken as a systematic

uncertainty.

7.4.10 Lepton Momentum Scale and Resolution

The primary reconstructed objects used for this analysis are leptons. Calibration of

the measured lepton momentum is performed in order to ensure the MC simulation

best describes the data. This calibration comes with associated uncertainties, which

must be evaluated by propagating them through the analysis and estimating the

effect. The muon momentum is calculated in the reconstruction by combining mea-

surements from the muon spectrometer and the inner detector. The momentum res-

olution for each of the subdetectors is varied within the associated uncertainty [102]

and the momentum recalibrated again. This produces four results, two shifts up

and two down, of which the largest up and largest down uncertainty is taken as

the systematic. The uncertainty on the electron momentum is estimated by inves-

tigating differences between simulation and data in resonances [103]. The electron
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momentum is then varied within the measured uncertainty in order to estimate the

effect on the value of fSM.

In both cases, pseudo-data are generated from the ∆φ distribution reconstructed

from each of the momentum scale/resolution variations. The pseudo-data are fitted

to the nominal templates and the process repeated for several pseudo-experiments.

The average measurement of fSM for each of the varied samples is compared to the

central measurement and the uncertainty is taken as the difference.

7.4.11 Lepton Scale Factors

As the reconstruction and trigger efficiencies are different between data and the MC

simulation, the total number of events after event selection can be over or under-

estimated. To address this, scale factors are calculated on a tag and probe sample

and applied to each individual lepton. These scale factors also carry an uncertainty,

the effect of which is estimated on the measured value of fSM by varying the scale

factors within the uncertainty. Again, pseudo-data are generated from the MC sim-

ulation, but with the lepton scale factors shifted up or down. The pseudo-data are

then fitted to the nominal templates and the results averaged and compared to the

central value of fSM. The difference between up (down) and nominal is taken as the

up (down) systematic shift.

7.4.12 Missing Transverse Energy

After each reconstructed object is corrected for resolution, energy scale, etc, the

change must be propagated into the Emiss
T . For example, if a jet is removed by the

jet reconstruction efficiency procedure, the Emiss
T would be calculated differently and

must be reevaluated. For each systematic procedure, the Emiss
T is recalcualted.
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In addition to this, an uncertainty on the Emiss
T calculation for parameters outside

the scope of reconstructed objects, such as energy deposits not associated with a

selected jet or electron, is estimated. These contributions to Emiss
T are modelled in

the MC simulation and calibrated against data. The calibration is then varied within

its uncertainty to provide an estimate for the systematic uncertainty. The effect of

pileup on the Emiss
T calculation is also estimated and included in the systematic

evaluation.

7.4.13 Pileup dependence

In order to check the affect of pileup on the ∆φ observable, events are categorised as

‘low’ or ‘high’ pileup events. A good approximation of the pileup content of an event

is the number of vertices. The ∆φ distribution is constructed for events with less

than four vertices, and for events with at least four vertices. The splitting at four is

chosen to ensure roughly equal statistics in each distribution, as well as providing a

distinction between very low, and high pileup events. The ratio of these two regions

is taken, and any shape difference between the two would constitute a dependence

on the pileup content.

Figures 7.13 and 7.14 show these ratios for all five analysis channels. No significant

shape difference is observed in both tt̄ models, nor data, suggesting that there is no

spin correlation dependence on pileup.
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Figure 7.13: Ratio of Nvtx < 4/Nvtx ≥ 4 for the ∆φ distribution, in the a) ee, b) µµ and
c) eµ channels.
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Figure 7.14: Ratio of Nvtx < 4/Nvtx ≥ 4 for the ∆φ distribution, in the a) e+jet and b)
µ+jet channels.
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7.4.14 Background Model Uncertainties

A good model for the various sources of background is crucial for a template based

analysis, as any small change in the shape of the distribution can affect the measure-

ment. In order to ensure the background model uncertainties are properly treated,

each background source is considered individually. In the case of the semileptonic

channel, the dominant sources of background events are from W+jets production

and fake leptons. For the dilepton channel, the Z/γ∗ process produces the dominant

background.

Z/γ∗+Jets

The uncertainty on the scale factor (calculated in section 6.5.1) is estimated by

varying the Emiss
T cut used to define the control region by 5 GeV up and down. This

then affects the number of events used to derive the normalisation. The difference

relative to the nominal analysis is evaluated using pseudo-experiments for both up

and down shifts.

Diboson

A theory uncertainty on the diboson cross section of 5% is evaluated, as well as an

extra uncertainty originating from the number of extra jets in the simulation. The

diboson MC simulation is generated with ALPGEN, a multi-leg generator. This

allows additional hard jets in the matrix element calculation without performing

the full NLO calculation. These additional jets carry an associated uncertainty on

the cross section of 24% per jet, which is added in quadrature. The background

sample is scaled up and down within the uncertainty and the fit is repeated for each

new sample. The difference between the up and down scaled samples with respect

to the nominal analysis is taken as a systematic uncertainty.
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Single Top

The single top cross section is normalised to the approximate NNLO cross sections

for the t-channel [104], s-channel [105], and Wt-channel [106]. The normalisations

of the MC samples are varied up and down within the calculated uncertainties to

estimate the systematic effect. The difference between up and down shifts with

respect to nominal is taken as a systematic uncertainty.

W+Jets

The W+jets cross section is derived from a data driven method, due to the large

uncertainty on the MC based prediction. The normalisation is calculated using the

charge asymmetry of W boson production.

In a proton-proton collider, there is an expected asymmetry between the number

of W+ and W− bosons produced, due to the larger positive charge content of the

incoming protons. The ratio of cross sections for these bosons can be predicted with

high precision [107]. The number of events containing a single charged lepton are

then counted in data and MC and categorised.

The equation

NW+ +NW− =
(NW+ +NW−)

(NW+ −NW−)
(D+ −D−) = (

rMC + 1

rMC − 1
)(D+ −D−) (7.9)

is used, where the contributions from tt̄, fake leptons and Z+jets are charge sym-

metric, relates NW± , the number of simulated W± events, to D± the number of

W± events observed in data. The single top background contribution is not charge

symmetric and is subtracted from the data. rMC is the predicted ratio of W+ to

W− production, measured in MC. The scale factor is applied to the left hand side

in order to match the observation in data.
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In addition, scale factors due to the different b-tag rates from W+heavy flavour (bb,

cc, c) are calculated. The total uncertainty for the W+jets normalisation is split

into the flavour fractions and then combined in quadrature.

To estimate the shape uncertainty on the W+jets prediction, parameters in ALP-

GEN, corresponding to theoretical scales, are changed and the analysis is performed

again, using pseudo-data to estimate the effect of changing the W+jets shape pa-

rameters.

Fake Leptons

The fake lepton contribution to the analysis is entirely data driven, as described in

section 6.4.2. The uncertainty is evaluated by varying the measured efficiencies used

in the matrix method. The real and fake efficiencies have associated uncertainties

derived from the methods used in measuring the efficiencies. In analysis channels in-

volving electrons, the real and fake contributions are varied independently and the

largest deviation from the central measurement is taken as the systematic uncer-

tainty for both upwards and downwards deviations. For the muon contribution, the

difference between two paramaterisations of the estimate is taken as the uncertainty,

with the central value being the average of these two methods.

7.4.15 Top Mass dependence

The default MC simulation used for both the Standard Model template and the A = 0

template model a top quark with mt = 172.5 GeV. The current best measurement

for the top quark mass is mt = 173.5 ± 0.6 ± 0.8 GeV [4], differing slightly from

the MC simulation used. Changing the top quark mass affects the production cross

section, which could feasibly alter the spin correlation, if the ratio of production

mechanisms changes.
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channel ∆fSM

ee ±0.01
µµ ±0.03
eµ ± < 0.01
e+jets ±0.05
µ+jets ±0.07

Table 7.4: Variation in fSM with top mass for each analysis channel. The variation is
computed using a ±2.5 GeV range around the central top mass (mt = 172.5 GeV).

In order to estimate the effect of a top mass variation on the spin correlation,

simulated samples with a different input top mass are used. Seven different mass

points, with 2.5 GeV spacing are used to generate pseudo-data, in order to estimate

the expected mean of the spin correlation parameter. All of the points are then

fitted with a straight line, and the variation between 172.5± 2.5 GeV is taken as an

estimate of the systematic effect due to varying top mass.

Figures 7.15 and 7.16 show the results of 20,000 pseudo-experiments for each mass

point. The uncertainty on each point represents the width of the fSM distribution

obtained through pseudo-experiments. The parameters of the fitted line are then

used to estimate the variation in fSM over a 5 GeV range. Table 7.4 shows the effect

of varying the top mass numerically.
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Figure 7.15: Average fitted value of fSM for seven different mass points between 165 GeV
and 180 GeV, for the a) ee, b) µµ, and c) eµ channels.
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Figure 7.16: Average fitted value of fSM for seven different mass points between 165 GeV
and 180 GeV, for the a) e+jets and b) µ+jets channels.
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7.4.16 Total Systematic Uncertainty

Table 7.5 shows a summary of the systematic uncertainties evaluated for all five

analysis channels. The final rows of the table show the total systematic uncertainty,

statistical uncertainty and combined statistical plus systematic uncertainty.

The largest contributions to the systematic uncertainty arise from the MC generator

uncertainties and the jet energy scale. Much of the uncertainties in the eµ channel

are much smaller than for other channels. Within the dilepton channels, the eµ

channel has a much larger number of events, leading to a more well defined separation

between the two templates. This makes it more robust to small changes due to

systematic shifts. Similarly, the lepton+jet channels have a much smaller separation,

making them extremely sensitive to subtle variations in the distribution.
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Figure 7.17: Simple confidence band construction, ignoring the physical boundary. The
measured value, x maps onto µ by the solid line. The uncertainty is given by the diagonal
dashed line.

7.5 Feldman Cousins confidence interval

When measuring a parameter with strict physical boundaries and a large uncer-

tainty, it is possible to measure a value outside of the physical region. This is an

expected occurence given the size of the uncertainty. When using the näıve Fre-

quentist approach, measuring a value close to or outside of the physical region may

give confidence intervals which extend outside of the physical region.

In figure 7.17 suppose the physical boundary on the parameter µ is at 0. The

measurement of x, which maps to µ results in a value of µ such that the uncertainty

overshoots the physical boundary. This leads to a confidence interval which partially

covers a non physical region. If the measured value of x were to map to a value of µ

below the physical boundary, the confidence interval tends to give undercoverage of

the result in the upper bound, with an unphysical central value and lower bound.

In figure 7.18 the diagram has been modified. If x generates a value of µ outside

the physical boundary, µ is fixed at the boundary, with the lower bound on the

confidence interval being fixed at the boundary. For values of x which generate
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Figure 7.18: Confidence band construction where µ is limited to a physical boundary, and
the uncertainty on µ follows a similar treatment.

µ < 0, the confidence interval is fixed at 1σ from 0. For example, if the physical

boundary were at µ = 0 and x generated a value of µ = −0.1, then µ is replaced

with the value of the boundary. The confidence interval is also modified for such

values, giving the 1σ uncertainty for all measurements below µ = 0. This is clearly

a conservative estimate.

Feldman and Cousins proposed an approach using a likelihood ratio ordering prin-

ciple in order to provide full coverage when measuring values close to the physical

boundary [108].

To illustrate the Feldman-Cousins confidence interval, consider this example of a

gaussian with standard deviation 1, where,

P (x|µ) =
1√
2π
e

−(x−µ)2

2 (7.10)

with x being a measurement, and µ the corresponding true value. A second gaus-

sian probability can be constructed, which constrains µ to be within the physical

boundary. P (x|µbest) is defined as in equation 7.10 with a simple added constraint.
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Figure 7.19: Feldman-Cousins construction of the confidence band. This construction
allows a smooth transition near the physical boundary, transitioning from a two sided
boundary to an upper limit automatically.

When x is in the physical region, let µbest = x and when x is outside the boundary,

let µbest be equal to the value at the boundary. Following this, all values of x map

to a physical value of µ. A likelihood ratio can then be constructed where,

R(x) =
P (x|µ)

P (x|µbest)
. (7.11)

For any given value of µ, values of x1 and x2 are chosen such that the integral,

∫ x2

x1

P (x|µ) = 0.68 (7.12)

for a 68% confidence level, and that R(x1) = R(x2).

Figure 7.19 shows the confidence interval for the Feldman-Cousins construction.

Interesting to note is that, far away from the physical boundary, the interval given

in figure 7.19 becomes that given in figure 7.17 (as well as in figure 7.18).

The next section discusses the results of the fit to data, with the corresponding

Feldman-Cousins confidence intervals constructed for each channel.
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7.6 Fit to Data

Figure 7.20 shows all five results, including the statistical and systematic uncertain-

ties. The dashed line represents the Standard Model prediction. All five results

are consistent with the Standard Model. Figures 7.21 and 7.22 show the Feldman-

Cousins confidence intervals for each channel. The blue band represents the statis-

tical uncertainty only, while the red and green bands represent the 68% and 95%

confidence intervals for the statistical and systematic uncertainties combined. The

results are sufficiently far from the boundary that no special treatment of the confi-

dence interval is required for any of the channels. The eµ channel alone can exclude

the alternate model with A = 0 at a significance of 7.8σ.

This may be improved with a combination of all five results, though care must be

taken to address correlations in some systematic uncertainties between channels.

Given the large uncertainty of the four remaining channels, a combination may not

yield a significant improvement.

The result presented here is consistent with the previous result [70], which was

performed in the dilepton channel only, with a subset of the data used here. The

previous result for a combination of all three dilepton channels was fSM = 1.30 ±
0.14(stat)+0.27

−0.22(syst). This thesis more than doubles the dataset in the dilepton

channel, as well as presenting the first measurement in ATLAS of the spin correlation

in the lepton+jets channel.

Interesting to note is that all of the central fitted values lie above fSM = 1. If a

charged Higgs were introduced into the top decay, as discussed in section 5.3.2, the

spin correlation may be expected to fall below fSM = 1.
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Figure 7.20: Summary of the results obtained for all five analysis channels.
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Figure 7.21: Feldman-Cousins confidence interval for the a) ee, b) µµ, and c) eµ channels.
The result of the fit to data is shown as the red line. The Standard Model expectation is
shown as the dashed line.
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Figure 7.22: Feldman-Cousins confidence interval for the a) e+jets, and b) µ+jets chan-
nels. The result of the fit to data is shown as the red line. The Standard Model expectation
is shown as the dashed line.
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Chapter 8
Concluding Remarks

The top quark is the most massive elementary particle in the Standard Model.

This large mass leads to an interesting property of the top quark, in that it decays

weakly before forming a bound state. This means the top quark is unaffected by

strong interactions before it decays, leaving properties such as its spin intact and

propagated to the decay products. This in turn implies that properties such as the

spin correlation in tt̄ pair production can be studied.

Several studies of the tt̄ spin correlation have been performed since the discovery of

the top quark in 1995. The CDF and DØ experiments have both published studies

of spin correlation at 1.96 TeV centre of mass energy [68, 69], with DØ claiming

the first 3σ evidence for non zero spin correlation. The amount of spin correlation

is dependent on the centre of mass energy of the system, as well as the production

mechanisms∗, meaning the measurements performed at the Tevatron and at the LHC

are complementary. At the LHC, ATLAS and CMS have both presented studies of spin

correlation [70, 71], finding results consistent with the Standard Model prediction,

with the ATLAS result [70] being the first observation of non zero spin correlation at

a confidence level of five standard deviations.

∗At the Tevatron, qq̄ production dominates, while gg fusion is the dominant production method
at the LHC

186



This thesis presented a further study, building on the previous publication from

ATLAS, using more than double the dataset. Several updates to systematic proce-

dures were included, after much work performed by the ATLAS collaboration. These

procedures are circulated through internal working groups, going through several

stages of approvals before becoming the standard systematic procedure to use for

any given analysis. One particular change to the systematic uncertainty is that of the

MC generator procedure. Previously, a comparison of MC@NLO and POWHEG

was performed, but recently a bug was found, affecting mainly the spin correla-

tion, in POWHEG, suggesting that this would provide an overestimation of the

uncertainty. An alternative procedure was adopted to estimate the MC generator

uncertainty, varying theory parameters in the generator. This approach is strongly

dependent on MC@NLO however, so further work may be needed in order to gen-

erate valid samples with POWHEG for comparisons.

Ongoing work within the spin correlation working group in ATLAS suggests the use

of more sophisticated reconstruction techniques, based on a kinematic fitter, which

may yield a more sensitive analysis in the single lepton channel.

As well as for the 2011 dataset, a much larger dataset has been collected in 2012,

with a higher centre of mass energy at 8 TeV. This presents another exciting op-

portunity to investigate the spin correlation, where the larger dataset may help to

constrain some uncertainties further, with the potential to improve on the low statis-

tics dilepton channels. In addition, the lepton+jets channel may be improved with

stricter cuts in the reconstruction. Following the LHC long shutdown, the collider

may restart with almost double the centre of mass energy as was used in the 2011

run, with
√
s = 13 − 14 TeV. The cross section for tt̄ production at

√
s = 14 TeV

increases more than five fold relative to the cross section at
√
s = 7 TeV [109].

This will provide yet more statistics, potentially allowing all five analysis channels

presented in this thesis to provide sensitive measurements of the spin correlation.
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Appendix A
Appendix A

A.1 Complete Table of Systematic Uncertainties

An expanded table of systematic uncertainties, as detailed in section 7.4, is presented

in table A.1. Instances of an uncertainty where no prescription exists for a given

channel are left blank. The total uncertainty is evaluated by summing the individual

uncertainties in quadrature, assuming all of the systematics are uncorrelated.
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Uncertainty ee µµ eµ e + jets µ + jets

Top Mass ± 0.01 ± 0.03 ± 0.00 ± 0.05 ± 0.07
MC Statistics ± 0.20 ± 0.07 ± 0.05 ± 0.14 ± 0.13
MC Scale Variation + 0.10/ - 0.10 + 0.10/ - 0.10 + 0.05/ - 0.05 + 0.16/ - 0.16 + 0.04/ - 0.04
Parton Shower + 0.21/ - 0.21 + 0.11/ - 0.11 + 0.04/ - 0.04 + 0.30/ - 0.30 + 0.23/ - 0.23
ISR/FSR + 0.26/ - 0.26 + 0.10/ - 0.10 + 0.08/ - 0.08 + 0.22/ - 0.22 + 0.16/ - 0.16
Underlying Event + 0.13/ - 0.13 ± 0.01 ± 0.00 + 0.12/ - 0.12 + 0.05/ - 0.05
Luminosity + 0.06/ - 0.10 + 0.08/ - 0.12 ± 0.00 ± 0.00 ± 0.01
(JES) EffectiveNP 1 ± 0.03 ± 0.04 ± 0.01 ± 0.03 + 0.00/ - 0.02
(JES) EffectiveNP 2 + 0.05/ - 0.07 + 0.05/ - 0.03 ± 0.01 + 0.04/ - 0.06 + 0.04/ - 0.09
(JES) EffectiveNP 3 + 0.04/ - 0.06 ± 0.05 ± 0.00 + 0.01/ - 0.02 ± 0.03
(JES) EffectiveNP 4 ± 0.04 + 0.05/ - 0.03 ± 0.00 ± 0.00 ± 0.02
(JES) EffectiveNP 5 ± 0.04 + 0.05/ - 0.03 ± 0.00 ± 0.00 ± 0.02
(JES) EffectiveNP 6restTerm ± 0.05 ± 0.05 ± 0.00 ± 0.01 ± 0.01
(JES) EtaIntercalibration TotalStat + 0.04/ - 0.07 ± 0.05 ± 0.00 + 0.03/ - 0.01 + 0.00/ - 0.03
(JES) EtaIntercalibration Modelling + 0.05/ - 0.08 ± 0.06 ± 0.00 + 0.07/ - 0.02 + 0.02/ - 0.05
(JES) SingleParticle HighPt + 0.05/ - 0.06 ± 0.05 ± 0.00 ± 0.00 ± 0.00
(JES) RelativeNonClosure FrozenShowers + 0.04/ - 0.06 ± 0.05 ± 0.00 ± 0.00 ± 0.00
(JES) NPVOffsetTerm + 0.04/ - 0.07 ± 0.05 ± 0.00 ± 0.02 ± 0.03
(JES) MuOffsetTerm + 0.05/ - 0.10 ± 0.07 ± 0.01 + 0.04/ - 0.02 + 0.03/ - 0.10
(JES) Closeby + 0.07/ - 0.12 ± 0.07 ± 0.00 ± 0.03 + 0.01/ - 0.07
(JES) FlavorComp + 0.08/ - 0.13 ± 0.09 ± 0.01 ± 0.02 + 0.06/ - 0.12
(JES) FlavorResponse + 0.07/ - 0.17 + 0.09/ - 0.12 ± 0.00 ± 0.01 + 0.01/ - 0.06
(JES) BJES + 0.09/ - 0.17 + 0.10/ - 0.13 ± 0.01 + 0.02/ - 0.00 + 0.01/ - 0.02
Jet Energy Scale + 0.22/ - 0.38 + 0.25/ - 0.26 + 0.02/ - 0.02 + 0.11/ - 0.09 + 0.10/ - 0.22
Jet Energy Resolution + 0.08/ - 0.08 + 0.11/ - 0.11 ± 0.00 + 0.02/ - 0.02 + 0.11/ - 0.11
Jet Reconstruction Efficiency + 0.15/ - 0.15 + 0.14/ - 0.14 ± 0.00 + 0.03/ - 0.03 + 0.12/ - 0.12
Muon Momentum Scale + 0.07/ - 0.07 + 0.09/ - 0.09 ± 0.00 ± 0.00 + 0.02/ - 0.02
Electron Momentum Scale + 0.04/ - 0.16 + 0.10/ - 0.15 ± 0.00 ± 0.02 ± 0.00
ee SF + 0.09/ - 0.18 - - - -
DY Normalisation + 0.06/ - 0.09 ± 0.07 - - -
MET Pileup Component + 0.09/ - 0.15 + 0.10/ - 0.12 ± 0.00 ± 0.02 ± 0.01
MET Soft Jet Component + 0.09/ - 0.14 + 0.09/ - 0.12 ± 0.00 + 0.05/ - 0.02 ± 0.03
Fake Lepton Normalisation + 0.02/ - 0.05 + 0.09/ - 0.11 ± 0.02 ± 0.02 ± 0.01
Diboson + 0.06/ - 0.10 ± 0.07 ± 0.00 ± 0.00 ± 0.00
Single Top + 0.06/ - 0.08 ± 0.07 ± 0.00 ± 0.00 ± 0.00
PDF ± 0.14 ± 0.06 ± 0.05 ± 0.11 ± 0.14
Muon Momentum Resolution + 0.08/ - 0.17 + 0.10/ - 0.14 ± 0.00 ± 0.00 ± 0.00
ee Fake Lepton Shape ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00
eµ Fake Lepton Shape ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00
µµ SF - + 0.10/ - 0.16 - - -
µµ Fake Lepton Shape - + 0.02/ - 0.00 - - -
eµ SF - - ± 0.00 - -
e+jets SF - - - ± 0.01 -
l+jets Fake Lepton Shape - - - + 0.06/ - 0.03 ± 0.00
(W+jet) ptjmin10 - - - ± 0.00 ± 0.00
(W+jet) iqopt3 - - - ± 0.00 + 0.02/ - 0.02
(W+jet) WJet2000 - - - ± 0.03 ± 0.04
(W+jet) WJet2001 - - - ± 0.06 ± 0.01
(W+jet) WJet2005 - - - + 0.03/ - 0.04 + 0.04/ - 0.06
(W+jet) WJet2003 4 - - - ± 0.01 ± 0.02
(W+jet) WJet2004 4 - - - ± 0.01 ± 0.02
(W+jet) WJet2003 5 - - - ± 0.01 ± 0.00
(W+jet) WJet2004 5 - - - ± 0.02 ± 0.00
znorm - - - ± 0.01 ± 0.00
µ+jets SF - - - - ± 0.01

Total Systematic + 0.57/ - 0.74 + 0.47/ - 0.54 ± 0.12 ± 0.49 + 0.41/ - 0.45
Data Statistics ± 0.38 ± 0.21 ± 0.11 ± 0.30 ± 0.29

Total Uncertainty + 0.68/ - 0.83 + 0.52/ - 0.58 ± 0.17 ± 0.57 + 0.50/ - 0.54

Table A.1: Systematic uncertainties for all five analysis channels. The total systematic
uncertainty is obtained by adding each systematic in quadrature.
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